
Towards Characterizing DNNs to Estimate Training Time using
HARP (HPC Application Resource (runtime) Predictor

Swathi Vallabhajoyula∗
Rajiv Ramnath∗

vallabhajosyula.2@buckeyelink.osu.edu
ramnath.6@osu.edu

The Ohio State University
Columbus, Ohio, USA

ABSTRACT
Training DNN models for accuracy is resource intensive and needs
high-performance computing resources. These resources comewith
a cost, and repeatedly training models with default allocations (com-
plete node) for significant periods is expensive. Optimally allocating
resources (roughly as needed by the job) allows the user to cut ex-
ecution costs (sometimes even without compromising execution
times). This also enables better utilization of the clusters by making
them more available. Finetuning every job is exhaustive in terms
of time to learn and understand the application and hardware char-
acteristics. We built a framework called HARP that tries to learn
from execution patterns (with some help from the user) and predict
resource needs for the required configurations. This study explores
the potential scalability of such models across different axis - input,
hardware, and application hyperparameters. We also explore the
transferability of such models within similar applications/ models
(DNN-16 layers and VGG 16, or VGG16 and ResNet50).

CCS CONCEPTS
• Software and its engineering → Designing software; • Com-
puting methodologies→ Cost-sensitive learning.

KEYWORDS
automated data generation, ML, model scalability, model transfer-
ability, walltime estimation,
ACM Reference Format:
Swathi Vallabhajoyula and Rajiv Ramnath. 2023. Towards Characterizing
DNNs to Estimate Training Time using HARP (HPC Application Resource
(runtime) Predictor. In Practice and Experience in Advanced Research Com-
puting (PEARC ’23), July 23–27, 2023, Portland, OR, USA. ACM, New York,
NY, USA, 3 pages. https://doi.org/10.1145/3569951.3597607

1 INTRODUCTION
Deep neural network models are prevalent in every field, and train-
ing domain-specific models needs an extensive understanding of
several NN models, datasets, and the desired output. Developers
∗Both authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PEARC ’23, July 23–27, 2023, Portland, OR, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9985-2/23/07.
https://doi.org/10.1145/3569951.3597607

try several variations of the model or similar models till it reaches
a sure accuracy while trying to train them faster to see the results.
This hyper-parameter tuning is an exhaustive process. Users often
allocate the default allocation requests and only finetune them if
the job fails or the resource is expensive. We observed a few project
spaces in Ohio Supercomputer (OSC) that are used to train custom
DNN models in different domains (Figure 1a). By studying the uti-
lization logs, we concluded that by course-tuning the no. of CPU
core requests while requesting one GPU core, the project spaces
could save up to 40% of the current usage.

2 HIGH-PERFORMANCE DEEP LEARNING
AND CHALLENGES TOWARDS
ALLOCATIONS

The time and memory requirements for training conventional DNN
models depend on a diverse set of features listed below (but not
just limited to):

• Training Data: the size of training data, where it is prepro-
cessed (CPU or GPU), how it is loaded into GPU (if GPU
training), its sample dimension (if Image) or length of the
sequence (min, max with padding, of word-wrapped), and
output size.

• Application Hyper-parameters: The batch size, no. of epochs,
learning rate, early stopping, optimizer, type of layers, no
of layers types of layers (dense, convolutional, recurrent,
dropout, normalization, to name a few), and no of trainable
parameters,

• The execution endpoint characteristics: type of node (CPU.
GPU/TPU), processor type and speed, available Memory
and swap Memory, cores per node, and inter-intra-io thread
configurations (or no of workers).

Assigning more cores does not necessarily guarantee faster ex-
ecutions (especially for GPU training). CPU is needed to load the
dataset while the GPU trains the model. CPU memory should be
large enough to hold the dataset, while GPU memory should be
large enough to hold the model parameters. The allocations are
charged per core hours, and if this job runs for 10 hours, it would
cost $1.6 (10*28*$0.003(CPU)+10*$0.09(GPU)) as per the service
costs for academic purposes on OSC if the user could tune the al-
locations as per the memory requirement (memory requirement
almost = Memory-per-core*no. of cores), the allocation for this job
could be reduced to $0.95 by safely allocating the cores to 5.

A typical procedure to manually estimate the resources has the
following steps:

https://doi.org/10.1145/3569951.3597607
https://doi.org/10.1145/3569951.3597607

PEARC ’23, July 23–27, 2023, Portland, OR, USA Vallabhajosyula and Ramnath

Figure 1: (a) Stats from different user groups and their allocation requests (1 node-GPU) (b) Near ideal resource utilizations
(from profile logs of different jobs from grafana). (c)(Top) The resource utilization of one GPU allocation on Owens for training
a fully connected DNN model. (c) (Bottom) Showing the influence of different hyperparameters on resource utilizations for the
same model.

(1) Training the model for a short time with some or complete
training data

(2) Observe the utilization traces from Grafana1 by using any
profiling or command line tools like Tau and note the CPU/
GPU utilization and memory utilization.

(3) Repeat steps 2 and 3 by changing the parameters (batch size,
input size) and observing the differences.

(4) Creates a simple equation to calculate the needs by con-
sidering the changes and using it to repeat steps 1, 2, and
3).

The users who extensively use CIs to train and hyperparame-
ter tune large models use a similar strategy and often follow the
customized (back of the envelop calculations). However, with the
rate at which DNN models evolve, the user upgrades them to build
comparable models. Moreover, hence have to re-do the calculations
every time the model changes, which is unresourceful.

3 CURRENT RESEARCH DIRECTION
Having a model like HARP2 (HPC Application Resource (runtime)
Predictor) enables configuring the application (a DNN training code)
with the framework along with the list of known potential features
(mentioned above). It generates the scaled-down (SD) training data
(like in step 1 of manual estimations) and runs the full-scale (FS)
application (like step 3) with minimal configurations. It used the SD
executions to learn about the application’s depends on hardware
against different configurations and used FS executions to scale
the predictions to actual runs allocation. The feasibility of such a
framework and the formulation is presented in papers [1] and [2].

We released version 1.0 of HARP software as part of the ICICLE3
release as an AI4CI solution. The code is available to download and
install on Linux-based systems. It is tested on all clusters at OSC.

Figure 2 shows the potential feature space and their overlaps
and the different components of the proposed HARP framework. A
human in a loop decides the possible configurations to profile the
application against. Then the framework automatically executed
the three phases – “generate” to generate the scaled-down and

1https://grafana.osc.edu/
2https://github.com/ICICLE-ai/harp
3https://icicle.osu.edu/cyberinfrastructure/software

“full-scale runs,” and “build” to pipeline the generated data through
a standard machine learning pipeline. An optimal predictive model
is selected per application based on the policy metrics and time-
cot limitation. We compare our results to the default settings –
allocating a large walltime with all resources on the node.

Table 1 shows the results for estimating the executing time for
a target application (training VGG16 model on Wiki Images for
estimating a person’s age). For prediction Model VGG16, we run
HARP from end-to-end, emulate the scaled-down(SD) and full-scale
(FS) runs, train models on emulated data, and build the estimators.
For the prediction Model Fully-DNN, we run HARP from end-to-
end, emulate only full-scale (FS) runs, train models on this newly
emulated data and already existing data that was previously gen-
erated by emulating a fully connected DNN model, and build the
estimators on this augmented dataset. By using an existing dataset,
we were able to learn the execution behaviors from existing similar
datasets and reduce the cost of data generation (from $5.15 to $1.35).
The availability of many training emulations for similar models
helps gain better prediction accuracies (MAE, MAPE, UPP) without
generating many additional application-specific emulations. We
draw a default baseline by calculating the cost of executing the
jobs with average walltime as estimated walltime. Every time a
job fails due to under allocation of time, we double the previously
estimated time and rerun the job; this cycle is repeated till the job
runs complete, and the cost of execution is the cumulative cost of
all runs per job. The actual execution cost is estimated based on
the actual allocation of CPUs and GPUs per job. The Precited esti-
mation chooses the low-cost execution allocation (CPU cores and
GPU) and estimates the cost of executing the application against
that configuration. By fine-tuning the CPU cores (especially GPU
jobs), we reduce the execution costs, even with a predictive model,
by 40% (as observed initially in Introduction).

4 FUTURE DIRECTION
The current data and the models are configured to estimate re-
source needs for single-node training. We must study what features
influence distributed training (no. of nodes, type of destitution,
bandwidths). For the single node application, we captured around
40 features we perceived to influence the execution time (Applying

 https://grafana.osc.edu/
https://github.com/ICICLE-ai/harp
https://icicle.osu.edu/cyberinfrastructure/software

Towards Characterizing DNNs to Estimate Training Time using HARP (HPC Application Resource (runtime) Predictor PEARC ’23, July 23–27, 2023, Portland, OR, USA

Figure 2: (Left) Visualizing the HARP framework; (Right) The distribution of features space their overlap with an example (for
profiling a sample DNN model)

Prediction
Model

Walltime Error
(Actual, Predicted) Training

Samples

New Data
Generation
Cost (in $)

Cost of Execution
(in $)

MAE MAPE UPP Actual Default Pred.
VGG16 1043 701 11 511 5.15 0.15 0.31 0.23
Fully-DNN 116 56 0 775 1.35 0.09

Table 1: MAE: Mean Absolute Error, MAPE: Mean Absolute Percentage Error, UPP: Under Prediction Error. Table showing the
estimation errors and the actual, default, and predicted execution costs for estimating execution time for training a VGG16
model on Wiki Image Dataset for age classification. Two different models were used to make the predictions - 1. model trained
on VGG16 emulations, 2, Model training of an existing emulation for training a fully connected DNN and a small sample of
VGG16 emulations

principle component analysis with 0.99 variances, reduced those
to 10). Including distributed training will increase the feature di-
mensionality. To do such feature engineering efficiently, we want
to perform the ablation analysis on the current single node data
along the three directions – input (without changing hardware or
application features) and changing hardware keeping the other two
constants, and training fine-tuning model parameters on a given
node and input.

Funding and Collaboration: This work was partially supported
by the National Science Foundation and the NSF AI Institute for Intel-
ligent Cyberinfrastructure with Computational Learning in the En-
vironment(ICICLE) under grant agreements OAC-1945347 and OAC-
2112606.The ideation behind the HARP development - data, AI and
automation-based challenges are presented, and HARP’s solutions ia

accepted as a short paper Insights from the HARP Framework: Us-
ing an AI-Driven Approach for Efficient Resource Allocation in HPC
Scientific Workflows to PEARC’23

REFERENCES
[1] Manikya Swathi Vallabhajosyula and Rajiv Ramnath. 2022. Towards Practical,

Generalizable Machine-Learning Training Pipelines to Build RegressionModels for
Predicting Application Resource Needs on HPC Systems. In Practice and Experience
in Advanced Research Computing (Boston, MA, USA) (PEARC ’22). Association for
Computing Machinery, New York, NY, USA, Article 43, 5 pages. https://doi.org/
10.1145/3491418.3535172

[2] Swathi Vallabhajosyula and Rajiv Ramnath. 2022. Establishing a Generaliz-
able Framework for Generating Cost-Aware Training Data and Building Unique
Context-Aware Walltime Prediction Regression Models. In 2022 IEEE Intl Conf
on Parallel & Distributed Processing with Applications, Big Data & Cloud Comput-
ing, Sustainable Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom). 497–506. https://doi.org/10.1109/ISPA-
BDCloud-SocialCom-SustainCom57177.2022.00070

https://doi.org/10.1145/3491418.3535172
https://doi.org/10.1145/3491418.3535172
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00070
https://doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom57177.2022.00070

	Abstract
	1 Introduction
	2 High-performance deep learning and challenges towards allocations
	3 Current Research Direction
	4 Future Direction
	References

