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ABSTRACT
High-performance computing (HPC) is essential for scientific re-
search, and efficient utilization of such high-demand resources
requires end users to understand their scientific workflows or tools
and their synergy with the execution environment. There needs
to be more workflow-specific history for machine learning (ML)
models to estimate resource requirements tailored to a specific
workflow or set of applications. In this work, we present the poten-
tial problems encountered while manually finetuning a workflow
for optimal resource utilization without overprovisioning or under-
allocating the resources. We highlight the need for an AI-driven
framework to estimate the resource requirements of applications
within the workflow and recommend optimal resource allocation
configurations. We introduce our generalizable AI-driven applica-
tion, the HPC Application Resource (runtime) Predictor (HARP)
Framework. HARP generates execution history against applica-
tion parameters and available hardware, builds several regression
models, and selects the best model to recommend cost-based or
time-based configurations for optimal resource allocation. Ourwork
demonstrates the effectiveness of HARP for estimating resource re-
quirements against Ohio Supercomputer Center (OSC) for training
a fully-connected neural net for image classification.

CCS CONCEPTS
• Software and its engineering → Designing software; • Com-
puting methodologies→ Cost-sensitive learning.
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1 INTRODUCTION AND BACKGROUND
Various academic and commercial supercomputing centers, such
as Ohio Supercomputer Center (OSU), Texas Advanced Computing
Center (TACC), San Diego Supercomputer Center (SDSC), and Ama-
zon Web Services (AWS), offer different types of services, including
batch allocations, web servers, and dedicated nodes to perform HPC
like weather prediction, or batch submissions for gene sequencing,
or training large Deep Neural Network Models. The cost of each
request is determined based on several factors, such as the type of
service, hardware, allocation time, and provider policies. Based on
prior knowledge about the computing needs of their workflows,
users select configurations that meet the necessary cost/time limits.

1.1 Problem Statement:
A job is said to be efficient if it utilizes the allocated resources
(cores) to their fullest extent by parallelizing the code if requesting
multiple cores, overlapping compute-I/O cycles, and efficient multi-
threading (inter-intra op thread distribution). For instance, if a job
requests a full CPU node (28 cores per node), OSC allocates a com-
plete node with 28 CPU cores and complete nodememory (≈117GB).
In order to be considered efficient, the job must consume the entire
memory block or use all 28 cores for most of the allocation time.

To best use shared cyberinfrastructure (CI) resources, users need
to understand the requested node architecture, allocation times, and
the space and time complexities of their workflow applications and
tools. It is crucial to understand the type of application, whether it
requires serial or parallel executions, is compute or I/O-intensive,
and whether CPU or GPU-intensive, to make the appropriate node
requests. By understanding the relationship between cores per node
and memory allocations, GPUs per core, and GPU Memory 1, users
can optimize the cores per node based on memory requirements
or desired parallelism for faster executions or lower per-core hour
billing.

Users who request and utilize shared computing infrastructure
(CI) can be classified into three categories: beginner, intermediate,
and expert, based on their experience and skills. Beginners typically
submit job allocations with recommended defaults and may adjust
the allocation hours if their jobs fail due to under-allocations. As
they submit more jobs with different workflows, they gain some ex-
perience through application and HPC documentation. This group
of users (nowwith intermediate experience) can write custom codes

1https://www.osc.edu/content/academic_fee_model_faq
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to parallelize computations, data loading, and optimize I/O opera-
tions. Expert users have a deeper understanding of the underlying
hardware and software, and they often develop their tools or codes
to optimize the execution time of their jobs. To study user behaviors,
we observed diverse research groups at OSU, including students
performing bioinformatics, research groups implementing small to
large AI-driven models for interdisciplinary sciences, and develop-
ing optimally distributed high-performance deep learning (HIDL)
applications.

Users typically share budgeted projects or groups on shared CIs
and are charged per node type and core hour for their utilization
expenses. Most jobs are submitted with defaults and only adjusted
if the job fails or drains most of project allocation. Users tend to be
more mindful when requesting frommore expensive CIs (like AWS).
We observed that users request full-node (all cores) for GPU jobs
as a default allocation leading to low CPU utilization. Optimizing
resource allocation can significantly reduce the cost of executing
a job. We found that up to 40% of allocation costs could be saved
if node allocations were adjusted based on memory requirements,
GPU [1] and parallelism [2].

1.2 Contributions
An AI-driven framework can observe the executions (job traces on
CIs) and estimate the resource requirements based on application
hyperparameters, allocations, and execution history. The model
should synthesize the runs when training data is unavailable and
tailor the estimations with respect to a target application (job). We
explored the feasibility of building a framework that can profile
a given job and estimate the walltime based on the availability of
resources (configurations). Generating training data for a given job
and configuration is time-consuming and resource-intensive (espe-
cially when each execution can take anywhere from a few hours to
days). For instance, training the DNN model with various hyperpa-
rameters for ImageNet data classification to achieve better accuracy
(epochs=100) can be expensive. In our previous research[3], we
investigated the possibility of generating cost-effective, application-
specific training data by scaling down the executions to understand
the distribution of execution patterns and adding a few complete
(full) executions to scale the predictions. We also explored the train-
ing data re-usability with applications in the same family using
the data obtained from training a VGG16 model to estimate the
resource requirements for ResNet50. We developed various regres-
sion models and proposed a custom policy to choose the best model
per target application. In our previous work [4] we proposed a
preliminary framework that estimates runtime for a given appli-
cation. In this work, we expanded on the framework and created
an end-to-end framework named HARP, which predicts HPC Ap-
plication Resources (runtime). The framework can predict the best
execution configuration for a given target application based on
time/cost constraints. HARP can be configured to generate training
data, build regression models, and predict execution times for a
given application against the provided configurations. The HARP
(release 1.0) is ready to be installed on Linux-based systems and
tested on OSC clusters. The code is available to download from
GitHub 2.

2https://github.com/ICICLE-ai/harp

1.3 Challenges for building an AI-driven
framework that estimates resource
requirements for custom workflows.

Several factors influence the execution time and resource needs
making it difficult to estimate resource requirements easily. In paper
[3], we observed that each application has a unique set of configu-
rations that influence its behavior (memory needs and execution
times), and a change in one (or more) can change the resource re-
quirements drastically. Users estimate their resource requirements
based on prior runs and often re-execute the job with the same
allocations. Configuring their job with different parameters (say,
training DNN with large epochs or a smaller/larger batch) calls for
a change in allocations. Increasing batch size increases memory
requirements, thus pushing the request to a larger GPU node which
is expensive and often has long wait times. Pushing it to a CPU
makes it run slower. In scenarios with diverse correlated and non-
linearly related features influencing the execution time, machine
learning models are needed to identify patterns and estimate the
resource needs. They can predict known execution resources and
can also scale to unseen environments and hyperparameters. While
these models have potential, there are challenges in building and
using these models. We detail these challenges next.

1.3.1 Availability of execution history: Good history of executions
is needed to train models to learn utilization patterns (memory
requirements, execution times) w.r.t allocations (hardware - mem-
ory, CPU/GPUs requested), and application input (DNN training
data) and hyperparameters (optimization, batch size). Supercomput-
ing centers are often constrained from sharing their workload due
to considerations of competition and client confidentiality. Some
datasets are indeed available, such as the MIT Data Center chal-
lenge 3 dataset created to profile and estimate workloads of DNN
applications. This dataset has high-level information about the job
type (DNNmodel and ID) and their respective execution allocations.
The details about the execution itself (batch size, input training
data, optimizations) are provided as low-level time-series event
logs(≈5TB). Due to the size and need for additional models to ex-
tract more information about the execution, we decided to focus on
generating target application-specific execution traces efficiently
(quick and less expensive).

1.3.2 Understanding and capturing resource-specific features for
machine learning: Depending on the nature of the task at hand, an
application can be classified as compute-intensive (such as training
neural networks), I/O intensive (such as processing large text cor-
pora), and/or memory-intensive (for instance, training Deep Neural
Network models like BERT [5]). These workloads possess distinct
features that describe their characteristics, including application
hyperparameters and hardware attributes like CPU/GPU frequency,
cores, memory, bandwidth, cores per node, and threads spawned.
Effectively engineering these features requires an in-depth compre-
hension of the tool or application’s implementation, resource allo-
cation, and predictive model characteristics. As a result, customized
feature engineering for each workflow and hardware architecture
can be challenging, time-consuming, and unproductive. To over-
come this challenge, we need a framework that can automatically
3https://dcc.mit.edu/data
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capture such features from execution history using human-in-loop
to provide different execution configurations specific to the do-
main/job.

1.3.3 Choosing an appropriate regression model per application-
specific data: To select an appropriate machine learning (ML) algo-
rithm, data scientists consider factors such as the type of training
data and the availability of training samples. For instance, some
models work well if the relationship between input features and
output predictions is linear (such as multi-linear regression orMLR),
while others only work with numeric data (also MLR or neural net-
work regressors, NNR) or combinational data (such as Decision
Trees(DTR)). Some algorithms require a large number of training
samples distributed across features (such as NNR), whereas others
only require a few samples (such as DTR). Moreover, as the target
application changes, the characteristics of the features may also
change, and selecting a universal ML algorithm for making esti-
mations may not result in the best predictions. Thus, we require
an algorithm to choose the best regression models ad-hoc for each
targeted application.

1.3.4 Selecting the appropriate execution configuration: It is pos-
sible for different allocation configurations for a job, all of which
execute the job more-or-less efficiently. Some configurations may
result in faster execution times, while others may have lower cost
of execution. The researcher is now stuck with identifying which
configuration is best. In other words, it should be the responsibility
of the framework to select the most appropriate prediction model
and execution configuration based on the time and cost constraints
of the job.

2 ADDRESSING CHALLENGES - THE HARP
FRAMEWORK

In this section, we describe the three components - "generate",
"build" and "predict" - that form the heart of HAPR.

(1) The human-in-loop "generate" component: Using the
CODAR Framework 4, this component generates training
data by running applications against the provided scaled-
down (SD) and full-scale (FS) configurations. The application-
specific hyperparameters are defined by the HARP user (i.e.
the end-user). In contrast, the HARP developer only needs
to define the execution endpoint configurations to generate
training data under "scaled-down" (SD) and "full-scale" (FS)
executions. The SDs are used as training data, and gradually,
FS data is incrementally included to validate and test the
framework with "seen/unseen feature values." The SDs are
generated by executing the application at a smaller scale, cre-
ating less intensive/faster workloads that enable executing
themwith a different and diverse set of potential applications
or allocation configurations quickly and efficiently. These
executions help models to understand the synergy between
these variable features. The FS runs are configured to project
this information to a different scale (of input or hardware).

(2) The automated "build" component: The framework cap-
tures all possible features that directly or indirectly con-
tribute towards estimating walltime. They could be unknown

4https://github.com/CODARcode/cheetah

contributors (like memory, which changes the cores per node
allocation, which in turn changes the execution time) or
presumed features (as known features), which could be re-
dundant (omp-num-threads and cores allocated per node).
This component pre-processes the generated training data,
removes redundant features, and combines correlated fea-
tures to reduce dimensionality and improve the accuracy of
predictive models. We train three-different regression mod-
els (MLR, DTR, Simple NNR) against different combinations
of training data (SD, SD+n%FS) and store the models for
inference. We keep training the models with incremental
FS sample generation (%FS) to replicate the human learning.
We up-sample FS data to remove the SD-FS imbalances and
scale the predictions w.r.t FS validation dataset (adjustment
factor).

(3) The policy-driven "predict" component: The final com-
ponent of the framework predicts the execution time for
the inference(test). The best-performing model is selected
using the mean-absolute-error (MAE) metric or a custom
"under-prediction and over-estimation" (Walltime Metric -
WTM) policy built combining several metrics (like under-
prediction percentage (UPP), over-estimation mean absolute
percentage error (OV_MAPE)) [4]. A model performs bet-
ter when it has lower UPP and minimizes the OE_MAPE.
The framework chooses an optimal predictive model (OPM)
based on the policy and estimates the walltime against all the
available configurations (hardware & application). The opti-
mal allocation configuration is selected based on time/cost
limitations.

3 A USE CASE FOR HARP - ESTIMATING
RESOURCE REQUIREMENTS FOR A
TARGET APPLICATION

This section provides an example that illustrates the capabilities
of HARP. Our objective is to evaluate the performance of a fully-
connected neural network image classifier by estimating the run-
times for a pre-defined set of configurations. Prior to executing
HARP, we provide the SD and FS configurations by varying the
input datasets (mnist, cifar10) and sample size, hidden layers, batch
sizes, and other Deep neurl network (DNN)-specific hyperparam-
eters. It generates training, processes it (as shown in Figure 1)
and estimates walltime for each test configuration. The framework
generates and pre-processes the training data based on the pro-
vided configurations and selects the best application-specific regres-
sion model to "predict" execution time for configurations meeting
cost/time limitations. The framework reduced the cost of generat-
ing "history" by a fifth after scaling-down executions (SD). (It took
≈3.5 Hrs to generate SD and FS training data as opposed to ≈19.4
Hrs if they were generated at full-scale.) The framework is evalu-
ated for predicting DNN training walltime against test data with
seen distributions and unseen distributions like GPU node(a100),
input data dimensions, higher dimensionality for neurons per layer,
hidden layers, batch, and epoch sizes.

The "predict" phase has the following steps:
(1) A "basic" vs. "custom" prediction - Predicting walltime as

one component (basic) vs. predicting walltime in terms of
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Figure 1: Visualizing the Automated Data Collection Pipeline and Model Generation

Est. Basic Custom Deft. Config (48, 1, 48) (28, 1, 28) (10, 1, 10)
Policy WTM MAE WTM MAE Act. WT 685 516 516
(RM,
TD,
VA)

(DTR,
SD,
1.29)

(NN,
SD+FS,
1.04 )

(NN,
SD,
1.55)

(NN,
SD,
1.55)

N/A
Act. $ 0.045 0.025 0.017
Dflt. $ 160.351 89.71 61.887

H Pred.* 180 95 103
MAE 188 145 46 46 - 0.012 0.005 0.003
MAPE 105 102 74 74 - H Exec.* 1225 1180 1237
UPP 58 62 71 71 - 0.08 0.57 0.041

OV_MAPE 139 166 80 80 - Cost Lt. X
WT Co. 448 430 439 439 207 Time Lt. X
$ Co. 0.02 0.02 0.02 0.02 33.22 * - WT (Walltime) and $ (execution cost);

Table 1: (Left) The table shows the Walltime predictions made by HARP in "Basic" and "Custom" mode against selected policy
(regression model (RM), data (TD), adjustment (VA)). The default (Deft) cost is calculated for allocating full nodes with a max
walltime limit. (Right) Applying OMP to select the best configuration w.r.t. cost (e.g. $0.01) and time (e.g. 120 sec) limits on
H.Pred. H-Exec shows the time (cost) spent on executing the job(config.) with H-Perd. Wt. and $ Co. gives the average per model
H-Exec values

sub-components (custom: epochs * per-epoch + constant
time to load libraries and datasets to memory). From Table 1
(left), Predictions made with a custom estimator have lower
MAPE and OV_MAPE errors. Customizing the estimators by
inducing domain knowledge helps reduce prediction errors.

(2) Policy-based regression model selection - Selects best-
performing regression model per application based on Policy.
From Table 1. (left), we can see the change in selection pol-
icy changing the prediction model (RM, TD, VA). The WTM
policy emphasizes reducing the underpredictions and mini-
mizing the over-estimation error.

(3) Cost/time bound execution configuration selection - Given
a hard limit on time (or cost), select the configuration with
minimum cost (or time). We strike the cost-time balance by
selecting a less expensive configuration that meets the time
limit (or vice-versa). Table 1 (right) shows an example where
the framework selects (28, 1, 28) as a configuration whose
predictions meet the time limit and has a lower cost than
the other qualifying peers.

4 CONCLUSION AND FUTUREWORK
We tested the feasibility of the pipeline against three unique single-
node workloads[4]. We were able to induce information about
core-hour billings and OSC’s CI architecture into the framework.
This enabled us to estimate predictions as per OSC allocations
and budgets. We explored the feasibility of model transferability
between DNN models by encoding model type or describing a
network (no. of hidden layers, neurons, opt). We propose future
work in three areas: (a) Adding more CIs into the framework and (b)
Profiling distributed training or workloads. and (c) building model

commons to re-use models to estimate allocations for repetitive or
similar workloads.
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