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Abstract—When sharing relational databases with other par-
ties, in addition to providing high quality (utility) database to
the recipients, a database owner also aims to have (i) privacy
guarantees for the data entries and (ii) liability guarantees (via
fingerprinting) in case of unauthorized redistribution. However,
(i) and (ii) are orthogonal objectives, because when sharing a
database with multiple recipients, privacy via data sanitization
requires adding noise once (and sharing the same noisy version
with all recipients), whereas liability via unique fingerprint
insertion requires adding different noises to each shared copy to
distinguish all recipients. Although achieving (i) and (ii) together
is possible in a naı̈ve way (e.g., either differentially-private
database perturbation or synthesis followed by fingerprinting),
this approach results in significant degradation in the utility
of shared databases. In this paper, we achieve privacy and
liability guarantees simultaneously by proposing a novel entry-
level differentially-private (DP) fingerprinting mechanism for
relational databases without causing large utility degradation.

The proposed mechanism fulfills the privacy and liability
requirements by leveraging the randomization nature of finger-
printing and transforming it into provable privacy guarantees.
Specifically, we devise a bit-level random response scheme to
achieve differential privacy guarantee for arbitrary data entries
when sharing the entire database, and then, based on this,
we develop an ϵ-entry-level DP fingerprinting mechanism. We
theoretically analyze the connections between privacy, fingerprint
robustness, and database utility by deriving closed form expres-
sions. We also propose a sparse vector technique-based solution
to control the cumulative privacy loss when fingerprinted copies
of a database are shared with multiple recipients.

We experimentally show that our mechanism achieves strong
fingerprint robustness (e.g., the fingerprint cannot be compro-
mised even if the malicious database recipient modifies/distorts
more than half of the entries in its received fingerprinted copy),
and higher database utility compared to various baseline meth-
ods (e.g., application-dependent database utility of the shared
database achieved by the proposed mechanism is higher than
that of the considered baselines).

I. INTRODUCTION

Massive data collection and availability of relational
databases (collection of data records with the same attributes
[13]) are very common in the current big data era. This results
in an increasing demand to share such databases with (or
among) different database recipients/service providers (SPs),

such as companies, research institutions, or hospitals, for the
purpose of “do-it-yourself” calculations, like personal adver-
tisements, social recommendations, and customized healthcare.

Most databases include personal data, and thus they usually
contain sensitive and proprietary information, e.g., medical
records collected as part of an agreement which restricts
redistribution. This poses three major challenges in database
sharing with different SPs: (1) privacy, the database owner is
obligated to protect the privacy of data entries in the shared
database to comply with the privacy policy and ensure con-
fidentiality, (2) liability, the database owner needs to prevent
illegal redistribution of the shared databases, and eventually
prosecute the malicious SPs who leak its data, and (3) utility,
the shared database needs to maintain high utility to support
accurate data mining and analysis.

Many works have attempted to address the challenges
on privacy and liability in isolation. To address the privacy
challenge, various data sanitization metrics are proposed, e.g.,
k-anonymity [47], l-diversity [41], t-closeness [31], and differ-
ential privacy (DP) [16]. Among them, DP has been developed
as a de facto standard for responding to statistical queries
from databases with provable privacy guarantees. It can also
be used to share personal data streams or an entire database
(i.e., identity query) in a privacy-preserving manner [11], [24].
Differentially-private mechanisms hide the presence or absence
of a data record in the database by perturbing the query results
with noise calibrated to the query sensitivity.

To protect copyright and deter illegal redistribution, dif-
ferent database watermarking and fingerprinting mechanisms
are devised to prove database ownership (i.e., identifying the
database owner from shared databases) [1], [46] and database
possession (i.e., differentiating between the SPs who received
copies of the database) [35], [22], [26], [23], [50]. In practice,
when sharing a database with a specific SP, the database owner
embeds a unique fingerprint (a binary string customized for
the SP) in the database. The embedded fingerprint is hard to
be located and removed even if a malicious SP attacks the
fingerprinted database (to identify and distort the fingerprint).

Only a few works have attempted to combine database san-
itization and fingerprinting in database sharing. In particular,
[45], [4], [29] propose inserting fingerprints into databases
sanitized using k-anonymity, and [17] proposed embedding
fingerprints into databases sanitized by the (α, β)-privacy
model [44]. However, these works solve the aforementioned
challenges in a two-stage (sequential) manner, where data
sanitization is conducted before fingerprinting. As a result, they
end up changing a large amount of entries in the database
and they significantly compromise the utility of the shared
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database (corroborated in Section VII). The only work that
attempts to integrate privacy protection and fingerprinting is
proposed in [20]. However, [20] injects continuous-valued
Gaussian noise to the data, considers various combinations of
variances as fingerprints, and relies on learning algorithms to
fit the Gaussian noises. Thus, [20] is vulnerable if a malicious
SP compromises a large portion of fingerprinted data entries
(shown in Section VII). Besides, these works do not address
the critical problem of controlling cumulative privacy loss if
the same database is repeatedly shared with multiple SPs.

In this paper, we bring together data sanitization and
fingerprinting in a unified mechanism, consider a stronger
privacy model compared to previous works, and develop entry-
level DP fingerprinting for relational database sharing. In what
follows, we summarize the main contributions and insights
of our work, and discuss its limitation caused by a unique
requirement of DBMS (Database Management System) design.

Main Contributions. Database fingerprinting is a randomized
scheme (that essentially performs bitwise randomization, i.e.,
randomly changes insignificant bits of randomly selected data
entries [1]), and thus is naturally endowed with certain level
of privacy. Yet, this hidden property (privacy protection) is
ignored in the literature. We harness the intrinsic random-
ness introduced by fingerprinting and transform it into a
provable privacy guarantee. In particular,

• We propose a bit-level random response scheme,
which fingerprints (marks) insignificant bits of data
entries using pseudorandomly generated binary mark
bits, to achieve ϵ-entry-level DP for the entire
database. Then, based on this scheme, we devise the
ϵ-entry-level DP fingerprinting mechanism.

• We establish a comprehensive and solid theoretical
foundation to quantify the properties of the proposed
ϵ-entry-level DP fingerprinting mechanism from 3 di-
mensions: (i) the privacy guarantee of it under attribute
inference attack, (ii) the fingerprint robustness of the
mechanism when it is subject to various attacks tar-
geting on the inserted marks, and (iii) the relationship
among privacy, utility, and fingerprint robustness.

• We devise a sparse vector technique (SVT)-based so-
lution to control the cumulative privacy loss when dif-
ferent fingerprinted versions of a database are shared
with multiple SPs.

• We evaluate the proposed mechanism using two real-
life databases. Experiment results show that our mech-
anism (i) provides higher fingerprint robustness than
a state-of-the-art database fingerprinting mechanism
[35], and (ii) achieves higher database utility than the
two-step methods (i.e., either local DP-based perturba-
tion, data synthesis under central DP, or k-anonymity
followed [35]) and the one-step approach (i.e., Gaus-
sian noise-based fingerprinting [20]) by considering
specific applications.

Insights. This paper is the first to show the feasibility of
considering privacy and liability in a unified mechanism to
simultaneously protect data privacy and prevent unauthorized
redistribution. Our mechanism can help a database owners (i)
generate privacy-preserving fingerprinted databases based on

their requirements on utility, privacy, and fingerprint robustness
and (ii) assess the privacy leakage under multiple sharings and
set the privacy budget accordingly in each sharing.

Limitations. In this work, we consider the sharing of entire
relational databases, where each data record can be uniquely
identified by an immutable pseudo-identifier (i.e., the primary
key) in order to support common database operations, e.g.,
union and intersection, which all depend on the value of
primary keys. This is a unique and hard requirement of
DBMS, and thus in this work, we do not consider member-
ship inference attacks as they become irrelevant under these
settings. We further discuss this in detail in Section III.

Roadmap. In Section II we review related works followed by
the privacy, system, objectives, and threat models in Section
III. In Section IV, we present the entry-level DP fingerprinting
mechanism. Then, we theoretically investigate the relationships
between database utility, fingerprint robustness, and privacy
guarantees in Section V. We develop the sparse vector tech-
nique (SVT)-based mechanism to share multiple fingerprinted
databases under entry-level DP in Section VI. We evaluate the
proposed scheme via extensive experiments in Section VII.
We provide further discussions and point out open problems
with potential solutions in Section VIII. Finally, Section IX
concludes the paper.

II. RELATED WORK

Database watermarking/fingerprinting. The seminal work
of database watermarking (that embeds the same bit-string in
selected insignificant bits to all shared database copies to claim
ownership) is proposed in [1]. Based on [1], several database
fingerprinting techniques were proposed [46], [35], [38]. In
particular, [35] is considered as the state-of-the-art that also
best suits for fingerprinting the entire database. This is because
[35] enables the insertion and extraction of arbitrary bit-
strings in relational databases and it also provides an extensive
robustness analysis. In Section VII, we develop three baselines
based on [35] (i.e., either local DP perturbation, DP database
synthesis, or k-anonymity followed by database fingerprinting
via [35]) and compare them with our proposed mechanism.

Data sanitization followed by watermarking/fingerprinting.
Some works attempted to protect data privacy and ensure
liability in isolation when sharing databases [17], [4], [29],
[45]. To be more specific, Bertino et al. [4] adopted the binning
method [36] to generalize the database first, then watermark
the binned data to protect copyright. Kieseberg et al. [29] and
Schrittwieser et al. [45] proposed fingerprinting a database
generalized by k-anonymity. Gambs et al. [17] sanitized the
database using the (α, β)-privacy model [44], which selects a
true data record in the domain of the database with probability
α and includes a fake data record outside the domain of the
database with probability β, and then they embed personalized
fingerprint in the database. These studies usually change a
large amount of data entries, which degrades database utility.
In particular, it has been observed that k-anonymity may create
data records that leak information due to the lack of diversity
in some sensitive attributes, and it does not protect against
attacks based on background knowledge [18].

All these schemes embed watermark or fingerprint into
already sanitized databases, instead of considering sanitization
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and marking (fingerprinting) together as a unified process.
Such sequential processing of a database will result in signif-
icant degradation in utility. This is because both sanitization
and fingerprinting are achieved via noise addition (first adding
noise to protect privacy, then adding noise to achieve liability
guarantee) which over-distorts the database. Our work is dif-
ferent from previous ones, since we unify data sanitization and
fingerprinting (to have higher data utility). We achieve provable
privacy guarantees during fingerprint insertion by adopting
a customized privacy model for DBMS and harnessing the
randomness of fingerprinting.

Database sanitization together with fingerprinting. The
closest work to ours is a concurrent paper [20], which inserts
Gaussian noises with various pre-determined variances to dif-
ferent blocks of a database to protect data privacy. The various
combination of noise variances for data blocks plays the role
of tractable fingerprints. However, the mechanism in [20] is
vulnerable even to the subset attack (Section V-C), because
in the fingerprints detection phase, [20] needs to use learning
algorithms to fit the inserted Gaussian noise and re-calculate
the corresponding variances. Hence, the fingerprint robustness
of [20] is very sensitive to the adopted learning algorithms and
the size of the database. Besides, [20] adds Gaussian noise to
data entries, which will significantly reduce the data utility. In
contrast, our mechanism changes each insignificant bit with
a certain probability, so some data entries will be intact. In
Section VII, we will show also compare with [20].

III. PRIVACY, SYSTEM, OBJECTIVES, AND THREAT

Here, we discuss the considered privacy model, database
fingerprinting system, objectives of the database owner and
malicious SPs, and various threats. The frequently used nota-
tions in this paper is listed in Table I. In what follows, we first
review the definition of a relational database and its unique
features, which are important for our specific definition of the
privacy model.

notations descriptions
R original database
R′ a neighboring database of R

M(R) fingerprinted database
R leaked (pirated) database
ri ith row of R

ri[t, k] the kth insignificant bit of the tth attribute of ri

p
the probability of changing an insignificant

bit in an entry in the database

B
mark bit to fingerprint a bit position

B ∼ Bernoulli(p)
ϵ,ϵ2,ϵ3 privacy budgets

∆ database sensitivity

TABLE I. FREQUENTLY USED NOTATIONS IN THE PAPER.

Definition 1 (Relational database [13]): A relational
database denoted as R is a collection of T -tuples. Each tuple
represents a data record containing T ordered attributes. Each
data record is also associated with a primary key, which is
used to uniquely identify that record. We denote the ith
data record in R as ri and its primary key as ri.PmyKey.

Unique Features of a Relational Database. In order to
support database operations, such as union, intersection, and

update, the primary keys should not be changed if a database is
fingerprinted or pirated [35], [1], [34].1 Due to the uniqueness
and immutability of the primary keys in relational databases,
the presence of a specific data record is not a private informa-
tion in general. In other words, it is no secret whether an indi-
vidual’s data record (a specific T -tuple) is present in a database
or not. Hence, the common definition of neighboring databases
(which differ by one row) in the differential privacy literature
does not apply in the case of sharing relational databases. Thus,
we consider an alternative definition of neighboring relational
databases and their sensitivity as follows.

Definition 2 (Neighboring relational databases): Two re-
lational databases R and R′ are called neighboring, if they
only differ by one entry, i.e., an attribute of a single individual.

Definition 3 (Sensitivity of a relational database):
Given a pair of neighboring relational databases R and
R′ that differ by one entry (e.g., the tth attribute of
the ith row, ri[t] and ri[t]

′), the sensitivity is defined as
∆ = supR,R′ ||R−R′ ||F = supri[t],ri[t]′

∣∣ri[t] − ri[t]
′
∣∣,

where sup and F represent the supreme value and the matrix
Frobenius norm, respectively.

A. Privacy Model

Next, we give our privacy model customized specifically
for databases with immutable primary keys.

Definition 4 (ϵ-entry-level DP): A randomized mechanism
M with domain D satisfies ϵ-entry-level differential privacy
if for any two neighboring relational databases R,R′ ∈ D,
and for all S ∈ Range(M), it holds that Pr[M(R) = S] ≤
eϵ Pr[M(R′) = S], where ϵ > 0.

Remark 1: Definition 4 is adapted from the conventional
notation of ϵ-DP [16], which obfuscates the presence or
absence of an entire row in R. Since the database recipi-
ent can easily identify if an individual is present in R by
directly checking its primary key, the conventional ϵ-DP is
not appropriate in the setting we consider. In contrast, our
privacy model, which aims at obscuring the specific value of
an arbitrary entry in R, better suits the requirement of DBMS
design. As discussed in Section I, destroying pseudo-identifiers
to prevent linkability or membership inference attacks becomes
an ill-posed problem for our considered case of DBMS. Thus,
in this paper, we focus on the attribute inference attacks
instead of membership inference attacks. As a matter of
fact, in addition to common database applications (e.g., SQL,
merging, splitting, union, and intersection), there are quite a
few applications requiring consideration of attribute inference
attacks over membership inference attacks, such as clustering-
based applications, where the goal is to assign individuals to
different clusters (determine their membership). An example
is the construction of a recommendation system based on the

1In DBMS design, the primary keys are required to be immutable, as
updating a primary key can lead to the update of potentially many other tables
or rows in the system. The reason is that in DBMS, a primary key also serves
as a foreign key (a column that creates a relationship between two tables in
DBMS). For instance, consider the database in Section VII in which each data
record represents a student. Here, the primary key of the data record can be
chosen as the student’s unique identification number, which can then be used
to refer to another table keeping the their real name, email, etc.

3



attributes of participants, in which the goal is to recommend
movies or products to each dataset participant while preserving
the privacy of the attributes of the participants [27]. Another
example is the community detection in social networks under
the setting of edge-DP (where hiding the presence or absence
of a specific node is an ill-posed problem) [24], [25].

Similar to the conventional DP, we define (ϵ, δ)-entry-level
DP as Pr[M(R) = S] ≤ eϵ Pr[M(R′) = S] + δ, δ ∈ [0, 1].

B. System, Objectives, and Potential Threats

We present the system model in Figure 1. We consider
a database owner with a relational database denoted as R,
who wants to share it with at most C SPs (e.g., to receive
specific services). To prevent unauthorized redistribution of
the database by a malicious SP (e.g., the jth SP in Figure 1),
the database owner includes unique fingerprints in all shared
copies of the database. The fingerprint essentially changes
different entries in R at different positions (indicated by the
yellow dots). The fingerprint bit-string customized for the jth
SP (SPj) is denoted as fSPj

, and the database received by SPj
is represented as R̃j . Both fSPj

and R̃j are obtained using the
proposed mechanism discussed in Section IV. R̃ represents an
instance of the privacy-preserving fingerprinted database.

Fig. 1. System model. All shared copies of the database meet entry-level
differential privacy, fingerprint robustness, and database utility requirements.

Objectives of database owner. In general, a database recipient
(SP) can be any of the following: (1) an honest party who will
use the received database to do SQL queries or data mining,
(2) an attacker who will hijack the database to make illegal
profits by making pirate copies of it, or (3) a curious party
who will try to infer the original data entries. Since an SP can
potentially play any of these three roles, the objectives of a
database owner are to make sure that the shared database have

• (i) high utility in order to support accurate database
queries and data mining tasks,

• (ii) liability guarantees to discourage illegal redistri-
bution, i.e., successfully extract a malicious SP’s fin-
gerprint (even if a malicious SP distorts the fingerprint
to mitigate detection) if the database is redistributed
without authorization,

• (iii) entry-level privacy guarantees against attributes
inference attacks, i.e., a data analyst cannot distinguish
between ri[t] and ri[t]

′ by inferring its received copy.

Although (ii) and (iii) are different demands, they can be
achieved at the same time, but at the cost of (i) (formally

discussed in Section V). In this paper, we assume that the
database owner is benign (i.e., it will not modify its own
database in order to frame any SP).

Objectives of malicious SPs. From the perspective of mali-
cious SPs, their objectives are to

• (a) redistribute received databases (make pirated
copies) without being accused by means of distort-
ing the inserted fingerprint and/or infer the original
sensitive data entries,

• (b) preserve database utility to gain illegal profit.

Since the malicious SPs will introduce extra utility loss while
distorting the fingerprint, (a) and (b) are also conflicting.
Additionally, we assume that all malicious SPs are rational
(i.e., they will not over-distort the content of a fingerprinted
database, otherwise they cannot make illegal profit out of a
pirated copy with poor utility).

Threats. Since we consider developing a mechanism to si-
multaneously achieve data privacy and liability guarantees, we
also need to address the corresponding threats from these two
aspects. In particular, the malicious SP can

• Infer the original values of data entries (in shared
databases) by using its prior knowledge or other
revealed data entries (we consider an adversary who
knows all data entries except for one, and uses ad-
vanced learning methods to infer the original value of
the unknown data entry).

• Conduct various attacks to distort the embedded fin-
gerprint bit-strings, e.g., random bit flipping attack,
subset attack, and correlation attack. In Section V, we
discuss these attacks in detail and derive closed-form
fingerprint robustness expression for each of them.

IV. PRIVACY-PRESERVING FINGERPRINTING

In this section, we first present the design principles of
the proposed mechanism and also discuss some plausible but
not viable alternatives. Next, we develop a general condition
for a bit-level random response scheme to achieve entry-
level DP database release/sharing. Then, we devise a concrete
mechanism built upon such a scheme to achieve provable
privacy guarantees for fingerprint insertion.

Principles of Mechanism Design. The core idea of database
fingerprinting is to introduce small errors by changing ran-
domly selected insignificant bits of encoded data entries using
a certain probability [1], [35]. The collections of selected bits
vary for different SPs and their fingerprinted values are deter-
mined by the unique fingerprint bit-strings of the SPs. Thus,
database fingerprinting is a randomized mechanism, which
essentially performs bitwise-randomization, i.e., changes the
data values by introducing noise at the bit-level of data
entries instead of directly perturbing the data (i.e., introducing
noise at the entry-level). As a result, we also establish our
entry-level DP fingerprinting scheme by conducting bitwise-
randomization. To achieve a provable privacy guarantee, we
calibrate the flipping probability (p) and the number of in-
significant bits (K) based on the sensitivity of the data entries.
Note that to achieve the desired privacy guarantee, we only
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need to calibrate the binary noise (fingerprint) to “obfuscate”
a certain number of insignificant bits that lead to the maximum
difference between any pair of entries, instead of letting the
binary noise “overwhelm” all the bits.

Other Plausible but not Viable Solutions. The entrywise-
randomization adopted by the conventional DP output per-
turbation mechanisms, e.g., [11], [24], are infeasible as a
building block of a fingerprinting mechanism, because they
change all data entries by adding noises drawn from some
probability distributions. Although local DP via randomized
response only changes each data entry with a particular prob-
ability [3], connecting such probability with the randomly
generated fingerprint bit-string is not straightforward. This is
because randomly changing each bit of each data entry (by
fingerprinting) may not lead to the identical random effect
required by local DP. Hence, it is also not suitable for designing
a database fingerprinting mechanism.

Another possible solution is to synthesize differentially-
private relational databases while keeping the primary keys
intact, and then inserting fingerprints into the results. This
approach is also not viable, because data synthesis techniques
usually generate artificial databases by sampling from noisy
marginal and joint distributions of attributes, which require the
clustering of similar attributes [9]. These methods heavily de-
pend on the accurate clustering of highly correlated variables.
Besides, data synthesis also requires additional computation to
analyze other similar and public data to identify correlations
and important marginals. To show the advantage of our mech-
anism, in Section VII, we compare it with DPSyn (a novel data
synthesis technique) [33] followed by fingerprinting in [35].

Since the other solutions fail due to the aforementioned
reasons, we consider achieving entry-level DP for the released
database by using bit-level random response. In particular,
when sharing a database with a specific SP, the values of se-
lected insignificant bits of selected data entries are determined
by XORing them with random binary variables, which vary
for different data sharing instances (with various SPs). Such
modification of bit positions in the database using different
binary values can also be considered as inserting different
fingerprints, which can be used to accuse a malicious SP if
there is a data leakage. Moreover, to achieve high utility for
the shared database, we simultaneously achieve entry-level DP
and fingerprinting, instead of achieving them in a two-step
appraoch (fingerprinting a differentially-private database) The
two-step approach is suboptimal compared with our mecha-
nism, because we directly harness the randomness (noises)
introduced in fingerprint insertion and transform it into a
provable privacy guarantee (entry-level DP). Thus, the privacy
guarantee can be interpreted as “achieved free” during the
fingerprint insertion. Whereas, the two-step solutions need to
assign separate randomness (noises) budgets to achieve privacy
and liability guarantee in a sequential manner.

A. Privacy-preserving Sharing via Bit-level Randomization

Traditional DP guarantees that the computed statistics from
a database (e.g., mean or histogram) are independent of the
absence or presence of an individual. However, in this work
we consider the release (sharing) of the entire fingerprinted
database, and the existence of a particular individual can be

easily determined by checking its primary key in the released
copy (discussed in Section III). Therefore, we focus on the
privacy of database entries (attributes of individuals).

Definition 5 (Bit-level random response): A bit-level ran-
dom response scheme (pseudorandomly) selects some bits of
some data entries in a database and changes the bit values of
such entries by conducting an XOR operation on them with
independently generated random binary mark bits, denoted as
B, where B ∼ Bernoulli(p).

Database fingerprinting schemes only mark the insignifi-
cant bits of the data entries to introduce tolerable error in the
database. In this paper, we assume that the kth to the last bit
of an entry is its kth insignificant bit. If the kth insignificant
bit of attribute t of data record ri (represented as ri[t, k]) is
selected, then the bit-level random response scheme changes
its value as ri[t, k]⊕B, where ⊕ is the XOR operator, and B
is a Bernoulli random variable with parameter p.

We develop the following condition for such a scheme to
achieve ϵ-entry-level DP on the entire database.

Theorem 1: Given a relational database R with sensitivity
∆ (Definition 3), a bit-level random response scheme, which
only changes the last K bits of data entries, satisfies ϵ-entry-
level DP if K = ⌊log2 ∆⌋+ 1 and p ≥ 1

eϵ/K+1
.

Proof: Since we consider neighboring databases that have
only a pair of different data entries which differ by at most
∆, it requires K =

⌊
log2 ∆

⌋
+1 bits to encode the difference.

Then, by applying Definition 4, we have

Pr
(
M(R) = R̃

)
Pr
(
M(R′) = R̃

)
(a)
=

K∏
k=1

Pr
(
ri[t, k]⊕Bi,t,k = r̃i[t, k]

)
Pr
(
r′i[t, k]⊕B′

i,t,k = r̃i[t, k]
)

=
K∏
k=1

Pr
(
Bi,t,k = ri[t, k]⊕ r̃i[t, k]

)
Pr
(
B′
i,t,k = r′i[t, k]⊕ r̃i[t, k]

)
(b)
=

K∏
k=1

p

(
ri[t,k]⊕r̃i[t,k]

)
(1− p)

(
1−ri[t,k]⊕r̃i[t,k]

)
p

(
r′i[t,k]⊕r̃i[t,k]

)
(1− p)

(
1−r′i[t,k]⊕r̃i[t,k]

)
(c)
=

K∏
k=1

(1− p

p

)((ri[t,k]−r′i[t,k])(2r̃i[t,k]−1)

)

≤
K∏
k=1

(1− p

p

)(∣∣ri[t,k]−r′i[t,k]
∣∣(2r̃i[t,k]−1)

)

≤
K∏
k=1

1− p

p
,

where (a) can be obtained by assuming (without loss of
generality) that R and R′ differ at the tth attribute of the ith
row, and thus the probability ratio at other entries cancel out.
ri[t, k] (or r′i[t, k]) represents the kth least significant bit of
the tth attribute of ri (or r′i), Bi,t,k (or B′

i,t,k) is the random
mark bit fingerprinted on ri[t, k] (or r′i[t, k]), and r̃i[t, k] is
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the identical result of the bit-level random response at this bit
position. (b) is because each of the last K bits of entry ri[t]
(or ri[t]

′) are changed independently with probability p, and
(c) can be obtained by applying u⊕v = (1−u)v+u(1−v) for
any binary variable u and v. Then, by making

∏K
k=1

1−p
p ≤ ϵ,

we complete the proof.

In Figure 2, we present a toy example of using bit-wise
randomization to achieve entry-level DP on a database R.
R′ is the neighboring relational database of R (Definition 2).
R and R′ only differs in the 2nd attribute of the ith data
record (highlighted cells in the upper panel of Figure 2). In
this example, we assume ∆ = 3. Then, according to Theorem
1, by just flipping the last K = ⌊log2 3⌋+ 1 = 2 insignificant
bits of entries in R with probability p, a certain level of entry-
level DP can be achieved. The lower panel of Figure 2 shows
the binary representation of R and R′, where the last 2 bits
subject to bit-wise randomization are underlined. In the next
section, we will show that the desired randomness (probability
p) can be obtained as a result of fingerprint insertion.

Fig. 2. An example of bit-wise randomizing last K = 2 insignificant bits of
each entry to achieve entry-level DP on database R with sensitivity ∆ = 3.

B. ϵ-Entry-level Differentially-Private Fingerprinting

Due to the randomness involved in the bit-level random
response scheme, for any given p and R, the output databases
will vary for each different run. However, in order to detect
the guilty SP who leaks the database, it is required that the
fingerprinted database shared with a specific SP must be unique
and it can be reproduced by the database owner even if the
mark bits, i.e., B’s, are generated randomly. In this section,
we discuss how to develop an instantiation of an ϵ-entry-
level differentially-private fingerprinting mechanism based on
the bit-level random response scheme, i.e., a mechanism that
satisfies Theorem 1, and at the same time, is reproducible when
sharing a fingerprinted copy with any specific SP using a given
Bernoulli distribution parameter p (i.e., the probability of a bit
being changed due to fingerprinting).

First, we collect all fingerprintable bits in R, i.e., all
insignificant bits (the last K bits) of all entries, in a set P:
P =

{
ri[t, k]

∣∣i ∈ [1, N ], t ∈ [1, T ], k ∈ [1,min{K,Kt}]
}

,
where N is the number of data records in R, and Kt represents
the number of bits to encode the tth attribute in R. When
the database owner wants to share a fingerprinted copy of
R with an SP with a publicly known external ID denoted as
IDexternal, it first generates an internal ID for this SP denoted
as IDinternal. We will elaborate the generation of IDinternal

in Section VI-A. Then, the database owner generates the

unique fingerprint for this SP via f = HMAC(Y|IDinternal),
which is a message authentication code (MAC) involving a
cryptographic hash function and a secret cryptographic key
(Y is the secret key of the database owner and | represents the
concatenation operator). We use L to denote the length of the
generated fingerprint.2

The database owner also has a cryptographic pseudoran-
dom sequence generator U , which selects the data entries and
their insignificant bits, and determines the mask bit x and
fingerprint bit f (which is an element of the fingerprint bit-
string f ) to obtain the Bernoulli random variable (i.e., B =
x⊕f ). To be more specific, for each ri[t, k] in P , the database
owner sets the initial seed as s = {Y|ri.PmyKey|t|k}.
If U1(s) mod ⌊ 1

2p⌋ = 0 (p = 1
eϵ/K+1

), then ri[t, k] is
fingerprinted. Next, the database owner decides the value of
mask bit x by checking if U2(s) is even or odd, and sets the
fingerprint index l = U3(s) mod L. By doing so, it obtains
the mark bit as B = x ⊕ f(l), and finally it changes the bit
value of ri[t, k] with ri[t, k]⊕B. We summarize the steps to
generate a fingerprinted database in Algorithm 1.

Algorithm 1: Generate M(R) for SP IDexternal.
Input : Database R, privacy budget ϵ, number of

changeable bits K, Bernoulli distribution
parameter p = 1/(eϵ/K + 1), pseudorandom
number sequence generator U , database
owner’s secret key Y

Output: fingerprinted database M(R) with ϵ-entry-level DP
1 Construct the fingerprintable set P .
2 Generate the internal ID, i.e., IDinternal for this SP

(will be elaborated in Section VI-A).
3 Generate the fingerprint string, i.e.,

f = HMAC(Y|IDinternal).
4 forall ri[t, k] ∈ P do
5 Set pseudorandom seed s = {Y|ri.PmyKey|t|k},
6 if U1(s) mod ⌊ 1

2p⌋ = 0 then
7 Set mask bit x = 0, if U2(s) is even;

otherwise x = 1.
8 Set fingerprint index l = U3(s) mod L.
9 Let fingerprint bit f = f(l).

10 Obtain mark bit B = x⊕ f .
11 Set ri[t, k] = ri[t, k]⊕B. {insert fingerprint}

Theorem 2: Algorithm 1 is ϵ-entry-level DP.

Proof: Since the value of Uj(s) (the jth random value
generated by U ) is uniformly distributed for a seed s [8], we
have Pr

(
U1(s) mod ⌊ 1

2p⌋ = 0
)

= 1/⌊ 1
2p⌋ > 2p. Similarly,

Pr(x = 0) = 1
2 , thus, for any given fingerprint bit f , we also

have Pr
(
B = 1,U1(s) mod ⌊ 1

2p⌋ = 0
)

≥ 1
22p = p, which

suggests that each ri[t, k] will be changed (i.e., XORed by 1)
with probability higher than p, and this satisfies the condition
in Theorem 1.

Remark 2: The proposed database fingerprinting scheme is
different from the existing ones discussed in Section II, as all

2We use MD5 to generate a 128-bits fingerprint string, since if the database
owner shares C copies of its database and L ≥ lnC, the fingerprinting
mechanism can thwart exhaustive search and various types of attacks [35].
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existing schemes fingerprint each selected bit by replacing it
with a new value obtained from the XOR of pseudorandomly
generated mask bit x and fingerprint bit f . Hence, the new
value is independent of the original bit value in the relational
database. This is why the privacy guarantees of existing
fingerprinting schemes cannot be explicitly analyzed. On the
contrary, we fingerprint each selected bit by XORing it with a
Bernoulli random variable B to make the fingerprinted entries
dependent on the original bit value in the relational database.
This enables us to derive a tight upper bound on the ratio of
the probabilities of a pair of neighboring databases returning
identical fingerprinted outcomes, which is the key step to
further connect this bound to a provable privacy guarantee.

Note that U produces a sequence of random numbers using
an initial seed, and it is computationally prohibitive to compute
the next random number in the sequence without knowing
the seed. Thus, from an SP’s point of view, the results of
M(R)’s are random. However, M(R) can be reproduced by
the database owner who has access to its own private key as
well as the external and the determined internal IDs of SPs.

C. Extracting the Fingerprint

When the database owner observes a leaked (or pirated)
database denoted as R, it will try to identify the traitor (mali-
cious SP) by extracting the fingerprint from R and comparing
it with the fingerprints of SPs who have received a copy of its
database. We present the fingerprint extraction procedure from
a leaked fingerprinted database in Algorithm 2.

Algorithm 2: Fingerprint extraction procedure
Input : The original database R, the leaked database

R, the Bernoulli distribution parameter p,
database owner’s secret key Y ,
pseudorandom number sequence generator
U , and a fingerprint template.

Output: The extracted fingerprint from the leaked
database.

1 Initialize c0(l) = c1(l) = 0, ∀l ∈ [1, L].
2 Construct the fingerprintable set P .
3 forall ri ∈ P do
4 Set pseudorandom seed s = {Y|ri.PmyKey|t|k},
5 if U1(s) mod ⌊ 1

2p⌋ = 0 then
6 Set mask bit x = 0, if U2(s) is even; otherwise x = 1.
7 Set fingerprint index l = U3(s) mod L.
8 Recover mark bit B = ri[t, k]⊕ ri[t, k].
9 Recover fingerprint bit fl = x⊕B.

10 c1(l) + +, if fl = 1; otherwise c0(l) + +.

11 forall l ∈ [1, L] do
12 f(l) = 1, if c1(l) > c0(l); otherwise, f(l) = 0.
13 Return the extracted fingerprint bit string f .

Specifically, the database owner first initiates a fingerprint
template (f1, f2, · · · , fL) = (?, ?, · · · , ?). Here, “?” means
that the fingerprint bit at that position remains to be deter-
mined. Then, the database owner locates the positions of the
fingerprinted bits as in Algorithm 1, and fills in each “?”
using majority voting. To be more precise, it first constructs
the fingerprintable sets P from R, i.e., P =

{
ri[t, k]

∣∣i ∈

[1, N ], t ∈ [1, T ], k ∈ [1,min{K,Kt}]
}

, where ri[t, k] is the
kth insignificant bit of attribute t of the ith data record in
R, and N is the number of records in R. Note that N may
not be equal to N , because a malicious SP may conduct the
subset attack (as will be discussed in Section V-C2) to remove
some data records from the received database before leaking
it. Second, the database owner selects the same bit positions,
mask bit x, and fingerprint index l using the pseudorandom
seed s = {Y|ri.PmyKey|t|k}. Third, it recovers the mark
bit as B = ri[t, k] ⊕ ri[t, k] and fingerprint bit at index
l as fl = x ⊕ B. Since the value of fl may be changed
due to the attacks launched by a malicious SP, the database
owner maintains and updates two counting arrays c0 and
c1, where c0(l) and c1(l) record the number of times fl
is recovered as 0 and 1, respectively. Finally, the database
owner sets f(l) = 1, if c1(l) > c0(l), otherwise f(l) = 0.
The database owner compares the constructed fingerprint bit-
string with the fingerprint customized for each SP who has
received the database, and one of these SPs will be considered
as guilty if there is a large overlap between its fingerprint
and the constructed one. It has been shown that the database
owner can correctly identify the malicious SP as long as the
overlapping between fingerprints is above 50% [26].

V. ASSOCIATING PRIVACY, FINGERPRINT ROBUSTNESS,
AND DATABASE UTILITY

Previously, we have presented a mechanism that achieves
provable privacy guarantees when fingerprinting a database.
Here, we investigate its impact on the database utility and fin-
gerprint robustness, and also establish the connection between
p (the probability of changing one insignificant bit of a data
entry),3 entry-level DP guarantee (ϵ), fingerprint robustness,
and utility of shared databases. We visualize the relationships
between these in Figure 3, where the arrow means “leads to”.
We have the high-level conclusion that privacy and fingerprint
robustness are not conflicting objectives that can be achieved
at the same time, however, at the cost of database utility.

Fig. 3. Relationship among p (probability of changing one insignificant bit
of an entry), privacy guarantee (ϵ), fingerprint robustness, and database utility.

A. Privacy against Attribute Inference Attacks

After receiving the fingerprinted database M(R), a mali-
cious SP can leverage sophisticated learning methods to infer
the original value of each data entry. In this section, we show

3p is the probability of the mark bit B taking value 1 (the probability of a
specific bit is fingerprinted and changed, i.e., XORed by 1). The probability
of the mark bit taking the value 0 is also p by design (i.e., the probability of
a specific bit is fingerprinted but not changed, i.e., XORed by 0). Thus, the
probability of a specific bit position being fingerprinted is 2p (see Line 6 in
Algorithm 1). We would like to remind that 2p < 1, as the probability of a
specific bit position is not selected to be marked is 1− 2p.
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that under our proposed privacy model (i.e., entry-level DP,
Definition 4), the malicious SP’s inference capability can never
exceed a certain threshold.

In particular, we consider a malicious SP who has access to
R/ri[t] (i.e., the original values of all data entries except the tth
attribute of the ith data record, ri[t]), and its inference capa-
bility is defined as InfCap = Pr(ri[t] = ζ1|M(R),R/ri[t]),
which is the posterior probability of the unknown entry ri[t]
taking a specific value ζ1. InfCap covers a wide-range of
inference attacks using learning-based techniques, as most of
the learning frameworks give outputs in terms of posterior
probabilities, e.g., Bayesian inference and deep learning. We
can have the following proposition about the inference capa-
bility of a malicious SP.

Proposition 1: No matter what learning-based inference
attack the malicious SP conducts, its inference capability can
never be higher than ψeϵ

ψeϵ+1 , i.e., InfCap ≤ ψeϵ

ψeϵ+1 , where

ψ =
Pr(ri[t]=ζ1|R/ri[t]

)

Pr(ri[t]=ζ2|R/ri[t]
) is the ratio of the malicious SP’s prior

knowledge of the unknown entry ri[t] taking different values
(i.e., ζ1 and ζ2) given all other entries are known.

Proposition 1 can be proved by using techniques presented
in [37], [24], and we omit it due to space limitation. Given ψ,
ψeϵ

ψeϵ+1 decreases as ϵ decreases, it means that the higher the
entry-level DP guarantee (smaller ϵ) is, the lower the inference
capability of malicious SPs becomes. The above considered
adversary who knows the entire database except one data entry
is a standard threat model in the DP literature. In some of the
real-world attacks, an adversary can also utilize some publicly
known auxiliary information (e.g., correlations among data
entries [37], [51], [11], [49] or social connections [30], [24])
to improve its inference capability. We will also work along
this direction in future work.

The goal of attribute inference attack using data cor-
relations is to compromise data privacy. In Section V-C3,
we discuss its counterpart that compromises the fingerprint
robustness; malicious SPs can also leverage the discrepancy
between data correlations before and after fingerprint insertion
to distort the embedded fingerprint bits.

B. Database Utility

Fingerprinting naturally changes the content of the
database, and thus degrades the utility. Here, we evaluate the
utility of a fingerprinted database from both data accuracy
and data correlation perspectives: we quantify the impact of
Algorithm 1 on the accuracy of each fingerprinted data entry
and the joint probability distribution of any pair of attributes.
The theoretical analyses are summarized in Proposition 2 and
3. These considered utility metrics are application independent,
and in general, the higher the accuracy of data entries and
pairwise joint distributions are, the better the task-specific
application utilities get (e.g., classification accuracy and mean
square error). We empirically validate this statement by con-
sidering task-specific application utilities in Section VII.

Proposition 2: Let ri[t] and r̃i[t] be the original and
the fingerprinted values of the tth attribute of the ith
row. Then, the expected error caused by fingerprinting, i.e.,
EB∼Bernoulli(p)

[∣∣∣ri[t]− r̃i[t]
∣∣∣], falls in [0,∆p], where ∆ is

the sensitivity of a pair of neighboring relational databases.
and p is the probability of a mark bit B taking value 1.

The proof is in Appendix A. Clearly, the higher the value
of p, the larger the expected absolute difference between a
fingerprinted data entry and the original value. It suggests
that the database owner can set the value of p based on
its requirement of data entry accuracy when generating a
fingerprinted database, which achieves a certain level of entry-
level DP, and vice versa. This leads us to the next corollary.

Corollary 1: Define fingerprint density as ||M(R) −
R ||1,1, where || · ||1,1 is the matrix (1, 1)-norm which sums
over the absolute value of each entry in the matrix. Then, we
have EB∼Bernoulli(p)

[
||M(R)−R ||1,1

]
∈ [0,∆pNT ].

In Section VI-B, we will exploit fingerprint density to
develop a support vector technique (SVT)-based solution to
share fingerprinted databases with multiple SPs.

Proposition 3: Let Pr(R[t] = π,R[z] = ω) and
Pr(R̃[t] = π, R̃[z] = ω) be the joint probability of the
tth attribute taking value π and the zth attribute taking
value ω before and after fingerprint insertion, respectively.
Then, Pr(R̃[t] = π, R̃[z] = ω) falls in the range of[
Pr
(
R[t] = π,R[z] = ω

)
(1− p)2K + Prmin(R[t],R[z])

(
1− (1− p)K

)2,
Pr
(
R[t] = π,R[z] = ω

)
(1− p)2K + Prmax(R[t],R[z])

(
1− (1− p)K

)2].
Prmin(R[t],R[z]) (or Prmax(R[t],R[z])) is the minimum (or
maximum) joint probability of attributes t and z in R.

The proof is in Appendix B. By marginalizing over R[t] and
R̃[z], we can have the following corollary.

Corollary 2: Let Pr(R[t] = π) and Pr(R̃[t] = π)
be the marginal probability of the tth attribute
taking value π before and after fingerprint insertion,
respectively. Then, Pr(R̃[t] = π) belongs to[
Pr
(
R[t] = π

)
(1− p)2K + Prmin(R[t])

(
1− (1− p)K

)2
,

Pr
(
R[t] = π

)
(1− p)2K + Prmax(R[t])

(
1− (1− p)K

)2],
where Prmin(R[t]) (or Prmax(R[t])) is the minimum (or
maximum) marginal probability of the tth attribute in R.

Thus, when p is small, both joint distributions and marginal
distributions will be close to that of the original databases, i.e.,
the fingerprinted database will have higher statistical utility.

C. Fingerprint Robustness against Attacks

Although, Li et al. [35] analyzed fingerprint robustness by
studying the false negative rate (i.e., the probability that the
database owner fails to extract the exact fingerprint from a
pirated database), they do not establish the direct connection
between the robustness and the tuning parameter (the finger-
printing ratio, which can be interpreted as a counterpart of p
in our work) in their mechanism.

In this paper, we investigate the robustness of the proposed
fingerprinting mechanism against three attacks, i.e., the random
bit flipping attack [1], [35], [14], subset attack [35], [10],
[50], [14], and correlation attack [50], [26]. In the following,
we quantitatively analyze the relationship between p (the
probability of changing one insignificant bit of a data entry)
and fingerprint robustness against these four attacks. The
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relationship between ϵ and fingerprint robustness can easily
be obtained by applying Theorem 1.

1) Robustness Against Random Flipping Attack: In random
flipping attack, a malicious SP flips each of the K last bits
of data entries in R̃ with probability γrnd with the goal of
distorting the data in the fingerprinted positions. In [26], the
authors have empirically shown that the malicious SP ends up
being uniquely accusable as long as the extracted fingerprint
from the leaked database has more than 50% matches with the
malicious SP’s fingerprint.

Yet, as the database owner shares more fingerprinted copies
of database with different SPs, to uniquely hold the correct
malicious SP responsible, it requires more bit matches between
the extracted fingerprint and the malicious SP’s fingerprint.
Thus, the number of bit matches (denoted as D, D ≤ L)
should be set based on the number of fingerprinted sharings
of the database. Appendix C discusses how to determine D.

Given the determined D, we evaluate the robustness of the
proposed fingerprinting mechanism against random bit flipping
attack in terms of the probability (denoted as Prbst rnd) that
the database owner successfully extracts any D fingerprint bits
of the malicious SP. Let the lth bit of the fingerprint string
be embedded wl times in R̃ (which happens with probability
(1/L)wl ). Thus, to extract this fingerprint bit correctly from
a copy of R̃ that is compromised by the random bit flipping
attack, the database owner needs to make sure that at most
⌊wl/2⌋ bits in R̃ that are marked by the lth bit of the fin-
gerprint string are flipped by the malicious SP, which happens
with probability pl =

∑⌊wl/2⌋
q=0

(
wl

q

)
γqrnd(1− γrnd)

wl−q .

Let m be the number of fingerprinted bit positions in
the database (m ≤ NKT ) received by the malicious SP,
and define set W as W = {w1, w2, · · · , wL > 0|

∑L
l=1 wl = m}.

Let also LD be the collection of any D bits of the
malicious SP’s fingerprint (|LD| = D). Then, we can obtain
the closed form expression of Prbst rnd in terms of p as
Prbst rnd =

∑NKT
m=1

(∑
wl∈W,l∈[1,L]

∑
LD

∏
l∈LD

pl(
1
L )

wl

)(
NKT
m

)
(2p)m(1− 2p)NKT−m,

which is monotonically increasing with p (p < 0.5) (detailed
analysis is deferred to Appendix C). Thus, a higher p leads to
more robustness against the random bit flipping attack.

2) Robustness Against the Subset Attack: In subset
attack, the malicious SP generates a pirated database by
selecting each data record in R̃ for inclusion (in the pirated
database) with probability γsub. This attack is shown to
be much weaker than the random bit flipping attack [35],
[26], [50]. According to [35] (page 40), the subset attack
cannot succeed (i.e., distorting even one fingerprint bit) unless
the malicious SP excludes all the rows fingerprinted by at
least one fingerprint bit. Thus, we measure the robustness
of the proposed fingerprinting mechanism against subset
attack using the probability (denoted as Prbst sub) that the
malicious SP fails to exclude all fingerprinted rows involving
a particular fingerprint bit (note that our analysis can be
easily generalized for excluding a fraction of fingerprinted
rows). Since the probability that a specific row is fingerprinted
by a specific fingerprint bit is 1 − (1 − p/L)KT , we have
the closed form expression of Prbst sub in terms of p (the
probability of changing an insignificant bit of an entry) as
Prbst sub = 1−

∑N
n=1

(
N
n

)
(γsub)

n
[
1− (1− p/L)KT

]n
(1− p/L)KT (N−n)

= 1 +
[
1− (1− p/L)KT

]N
−
[
1− (1− p/L)KT + γsub(1− p/L)KT

]N
. Clearly,

the larger p leads to less difference between 1− (1− p/L)KT

and 1 − (1 − p/L)KT + γsub(1 − p/L)KT , which suggests
that Prbst sub also monotonically increases with p.

Note that in the subset attack, the primary keys are shared
intact, but the content is shared partially. It is different with the
scenario where the malicious SP just leaks specific attributes
without the primary keys. Our proposed mechanism can only
have privacy guarantee but no liability guarantee for the
latter scenario. However, without the primary keys, the leaked
information is not a valid relational database anymore and it
cannot support operations like database union and intersection,
thus, it is considered to have no database utility and it will not
help the malicious SP make illegal profit.

3) Robustness Against Correlation Attack: In [26],
the authors identify a correlation attack against database
fingerprinting mechanisms, which takes advantage of the
intrinsic correlation between data entries in the database
to infer and compromise the potentially fingerprinted bit
positions. In particular, the malicious SP changes the
insignificant bits of entries in R̃ if the data entries satisfy∣∣Pr (R̃[t] = π, R̃[z] = ω

)
− Pr

(
R[t] = π,R[z] = ω

)∣∣ ≥ τ, ∀z ∈ [1, T ], ∀ω,
where τ is a predetermined parameter for this attack.

Similar to [26], we adopt the confidence gain of the
malicious SP (denoted as G) to analyze the robustness of
the proposed fingerprinting mechanism against the correlation
attack. The confidence gain measures the knowledge of a
potentially fingerprinted data entry under correlation attack
over random guess. To be more specific, G is defined as
the ratio between the probability that a specific entry (whose
original tth attribute takes value π) will be selected to be
compromised in the correlation attack and the probability that
such entry will be selected to be compromised in the random
bit flipping attack. Mathematically, this can be shown as
G =

1−
∏

z∈[1,t],z ̸=t

∏
ω Pr

(∣∣Pr
(
R̃[t]=π,R̃[z]=ω

)
−Pr

(
R[t]=π,R[z]=ω

)∣∣≤τ)
(1−(1−p)K) Pr(R[t]=π)

.

In Appendix D, we show that G decreases as p increases
when our proposed entry-level DP fingerprinting mechanism
is used. This implies that the robustness of our proposed
fingerprinting mechanism also increases with p.

VI. SHARING MULTIPLE DATABASES

A major challenge in practical use of DP is that data
privacy degrades if the same statistics are repeatedly calculated
and released using the same differentially-private mechanism.
The same is true for sharing a database with multiple SPs. If
different fingerprinted copies of the same database are shared
multiple times, the average of them may converge to the
original database (known as average attack), which implies
that privacy guarantee of Algorithm 1 degrades linearly with
number of sharings.

If the privacy budget is depleted, then the database curator
will just stop answering to the same queries (e.g., page
42 and 56 of [16]). Thus, in practice, the database owner
will also release its database only to a limited number of
SPs, and for each released copy, it will have certain data
privacy and fingerprint robustness requirements. According
to Figure 3, these requirements can both be fulfilled if the
utility of the shared database is compromised to a certain
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extent (but not significantly as will be corroborated in Section
VII). Based on Section V, we know that the database utility
can be characterized by the fingerprint density (defined in
Corollary 1), because the higher the fingerprint density is, the
lower the database utility becomes, and the database owner
can control the utility of repeatedly shared databases using
fingerprint density. Hence, we let the database owner only
share a fingerprinted database, M(R), if its fingerprint density,
||M(R)−R ||1,1, is beyond a predetermined publicly known
numerical threshold, Γ, in order to meet the requirement of
high data privacy guarantee and fingerprint robustness.

As discussed in Section IV-B, the fingerprinted database
M(R) customized for a particular SP depends on an internal
ID assigned by the database owner to the corresponding SP.
Since the internal ID of the SP is an input for inserting
the fingerprint (Algorithm 1), whether ||M(R) − R ||1,1 is
higher than Γ also depends on the assigned internal ID. As a
consequence, when an SP queries the database, the database
owner needs to keep generating a new internal ID for it until
the resulting fingerprint density is above Γ. Moreover, this
process (i.e., internal ID generation and fingerprint density
comparison with the threshold) also needs to be performed in
a privacy-preserving manner. The reason is that according to
Section V (Proposition 2 and Corollary 1), fingerprint density
provides additional knowledge about the fingerprint robustness
and privacy guarantee. If a malicious SP accurately knows for
sure that its received database has fingerprint density higher
than Γ, i.e., the database owner cannot plausibly deny, the
malicious SP can estimate the percentage of changed entries
due to fingerprint, and further distort the fingerprint.

The above discussion inspires us to resort to the sparse
vector technique (SVT) [16], [40], that only releases a noisy
query result when it is beyond a noisy version of Γ, to design
a mechanism for sharing multiple entry-level differentially-
private fingerprinted databases and at the same time controlling
the cumulative privacy loss. The unique benefit of SVT is
that it can answer multiple queries while paying the cost of
privacy only for the ones satisfying a certain condition, e.g.,
when the result is beyond a given threshold. In Section VI-A,
we present an intermediate step which considers only one
SP, determines its internal ID, and conducts the comparison
between the resulting fingerprint density and threshold under
entry-level DP guarantee. In Section VI-B, we compose this
intermediate step for C times to determine the internal IDs for
C SPs and share different fingerprinted databases.

A. Intermediate Step: Determining Internal ID for One SP

As elaborated earlier, the database owner needs to assign
an internal ID to an SP in order to achieve ||M(R) −
R ||1,1 > Γ for the purpose of simultaneously meeting data
privacy and fingerprint robustness requirements. To achieve
differential privacy for this intermediate step, we perturb both
||M(R) − R ||1,1 and Γ, and consider the noisy comparison
||M(R) − R ||1,1 + µ > Γ + ρ, where µ and ρ are Laplace
noises. Establishing the noisy comparison is a standard ap-
proach in SVT (see [16] page 57, and [40] page 639).

Next, we formally present the intermediate step. When the
database owner receives a query from a new SP (suppose that
this SP is the cth SP and c ∈ [1, C]), it generates an instance

of internal ID for the cth SP via IDc
internal = Hash(K|c|i),

where i ∈ {1, 2, · · · } denotes the sequence number of this trial
to generate IDc

internal. Then, the database owner generates the
fingerprinted database via Algorithm 1 with the internal ID set
as IDc

internal in Line 2. Similarly, we denote the fingerprinted
database generated for the cth SP at the ith trial as Mc

i (R).
Next, the database owner conducts the noisy comparison
||Mc

i (R) − R ||1,1 + µi > Γ + ρi, where µi ∼ Lap(∆/ϵ2)
and ρi ∼ Lap(∆/ϵ3). Here, ϵ2 and ϵ3 are the privacy budgets
used to control the accuracy of the noisy comparison. If
||Mc

i (R) − R ||1,1 + µi > Γ + ρi holds, then the database
owner returns a symbol ⊤ and immediately terminates the
intermediate step. This means that IDc

internal generated at the
ith trial for the cth SP can lead to a fingerprinted database
satisfying the data privacy and fingerprint robustness require-
ments. Otherwise, the database owner returns a symbol ⊥,
increases i by 1, and continues the process. We summarize this
intermediate step in Algorithm 3. This entire process achieves
entry-level DP as proven in the following theorem. Note that
the identified IDc

internal is not released to the SP. As we will
show in Section VII-C, an instance of IDc

internal satisfying
||Mc

i (R)−R ||1,1 + µi > Γ+ ρi can usually be generated in
1 or 2 trials depending on the ratio of ϵ2 and ϵ3.

Algorithm 3: Determine the Internal ID for One SP
Input : Original database R, fingerprinting scheme

M, sequence number of a new SP, i.e., c,
threshold Γ, and privacy budget ϵ, ϵ2, and ϵ3.

Output: {⊥,⊥, · · · ,⊥,⊤}.
1 forall i ∈ {1, 2, 3, · · · } do
2 Get an instance of internal ID for the cth SP,

IDc
internal = Hash(K|c|i).

3 Get Mc
i (R) by calling Algorithm 1 with

IDc
internal and privacy budget ϵ.

4 Sample µi ∼ Lap(∆ϵ2 ) and ρi ∼ Lap(∆ϵ3 ).
5 if ||Mc

i (R)−R ||1,1 + µi ≥ Γ + ρi then
6 Output ai = ⊤. {ith trial meets the

requirement}
7 Terminate the algorithm.
8 else
9 Output ai = ⊥. {trial does not meet the

requirement}

Theorem 3: Algorithm 3 achieves (ϵ2+ϵ3)-entry-level DP.

Proof: Suppose that Algorithm 3 terminates with l
outputs (it takes l tries to determine IDc

internal, leading to a
“TRUE” condition for the noisy comparison). We represent the
output sequence as a, i.e.,

a = [a1, a2, · · · , al] = {⊥}l−1 ∪ {⊤}.

By defining

fi(R, z) = Pr(||Mi(R)−R ||1,1 + µi < Γ + zi),

gi(R, z) = Pr(||Mi(R)−R ||1,1 + µi ≥ Γ + zi),

where zi is an instance of ρi generated at Line 5 in Algorithm
3. Then, we can have
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Pr
(
DetermineTheInternalIDforOneSP(R) = a

)
Pr
(
DetermineTheInternalIDforOneSP(R′) = a

)
=

∫∞
−∞ Pr(ρi = zi)

∏l−1
i=1 fi(R, zi)gl(R, zi)dzi∫∞

−∞ Pr(ρi = zi)
∏l−1
i=1 fi(R

′, zi)gl(R
′, zi)dzi

(∗)
=

∫∞
−∞ Pr(ρi = zi −∆)

∏l−1
i=1 fi(R, zi −∆)gl(R, zi −∆)dzi∫∞

−∞ Pr(ρi = zi)
∏l−1
i=1 fi(R

′, zi)gl(R
′, zi)dzi

=♣,

where (∗) is obtained by changing all the integration variables,
i.e., zi’s, to (zi − ∆)’s, ∀i ∈ {1, 2, 3, · · · }. Next, we investi-
gate the three parts of the integrand in the numerator of ♣
separately.

First, we have Pr(ρi = zi − ∆) ≤ eϵ3 Pr(ρi = zi), as
ρi is attributed to a Laplace distribution whose parameter is
calibrated using ∆.

Second, suppose R and R′ differs at rij and r′ij . Then,

||Mi(R
′)−R′ ||1,1 − ||Mi(R)−R ||1,1

=|r̃′ij − r′ij | − |r̃ij − rij | ≤ ∆,

where r̃ij (or r̃′ij) is the fingerprinted version of rij (or r′ij).
The equality follows from that for any specific SP (which
uniquely determines a pseudorandom seed), Algorithm 1 will
select exactly the same bit positions in both R and R′ to insert
the fingerprint, and all selected bits except for the different
entry between R and R′ will also be replaced with the exact
same bit values. The inequality is because both |r̃ij − rij | and
|r̃′ij−r′ij | are upper bounded by ∆. As a result, for the second
part in ♣, we obtain

fi(R, zi −∆)

=Pr
(
||Mi(R)−R ||1,1 + µi < Γ + zi −∆

)
≤Pr

(
||Mi(R

′)−R′ ||F + µi −∆ < Γ + zi −∆
)

=fi(R
′, zi),

where the inequality holds since we replace ||Mi(R)−R ||1,1
by a smaller value, i.e., ||Mi(R

′) − R′ ||F − ∆, which
decreases the probability.

Third, since µi is a Laplace noise, which is also calibrated
using ∆, we have

gl(R, zi −∆)

=Pr
(
||Mi(R)−R ||1,1 + µi ≥ Γ + zi −∆

)
≤eϵ2 Pr

(
||Mi(R

′)−R′ ||1,1 + µi −∆ ≥ Γ + zi −∆
)

=eϵ2gl(R
′, zi).

Hence,

♣ ≤
∫∞
−∞ eϵ3 Pr(ρi = zi)

∏l−1
i=1 fi(R

′, zi)e
ϵ2gl(R

′, zi)dzi∫∞
−∞ Pr(ρi = zi)

∏l−1
i=1 fi(R

′, zi)gl(R
′, zi)dzi

=eϵ2+ϵ3 .

which completes the proof.

Note that although we allocate the privacy budget ϵ when
generating the fingerprinted database for the SP at Line 3
in Algorithm 3, it does not contribute to the total privacy
loss. This is because here, IDc

internal is used for fingerprint
insertion, but the numerical fingerprinted database has not been
shared yet.

B. Composition of Intermediate Steps: Releasing Multiple
Fingerprinted Databases

We have presented an intermediate step, in which, to
guarantee that an SP receives a copy of fingerprinted database,
the database owner keeps generating an instance of internal ID
for it until the noisy comparison result is “TRUE”. Now, we
show how to compose the intermediate steps for C times to
determine the internal IDs for C SPs, and at the same time,
share the corresponding fingerprinted databases (generated
using their final internal IDs) with them. The workflow is
summarized in Algorithm 4. Its differences with Algorithm
3 are highlighted in the boxes.

Algorithm 4: Share Fingerprinted Databases with C SPs
Input : Original database R, fingerprinting scheme

M, sequence number of SPs, i.e.,
{1, 2, · · · , C}, threshold Γ, and privacy
budget ϵ, ϵ2, ϵ3 and δ′.

Output: {a1, a2, a3, · · · , aC}.
1 Set count = 0.
2 forall cth SP c ∈ {1, 2 · · · , C} do
3 forall i ∈ {1, 2, 3, · · · } do
4 Generate an instance of internal ID for the cth

SP via IDc
internal = Hash(K|c|i).

5 Generate Mc
i (R) by calling Algorithm 1 with

IDc
internal and privacy budget ϵ.

6 Sample µi ∼ Lap(∆ϵ2 ) and ρi ∼ Lap(∆ϵ3 ).
7 if ||Mc

i (R)−R ||1,1 + µi ≥ Γ + ρi then
8 Output ai = Mc

i (R) .
9 else

10 Output ai = ⊥.

If the database owner wants to share its database with
more than C different SPs, it can reduce the value of the
fingerprint density threshold Γ, which, however, compromises
the privacy and fingerprint robustness of shared databases,
because reducing Γ increases utility of shared databases. We
show the privacy guarantee of Algorithm 4 in Theorem 4.

Theorem 4: Algorithm 4 achieves (ϵ0, δ0)-entry-level DP
with ϵ0 =

√
2C ln(1/δ′)(ϵ+ ϵ2 + ϵ3) + C

(
ϵ(eϵ − 1) + (ϵ2 +

ϵ3)(e
ϵ2+ϵ3 − 1)

)
, and δ0 = 2δ′.

Proof: Algorithm 4 is the composition of C rounds
of Algorithm 3 together with C rounds of Algorithm 1.
According to the advanced composition theorem [16], C
rounds of Algorithm 3 and C rounds of Algorithm 1 are
(
√
2C ln( 1

δ′ )(ϵ2 + ϵ3) + C(ϵ2 + ϵ3)(e
ϵ2+ϵ3 − 1), δ′)-entry-

level DP and (
√

2C ln( 1
δ′ )ϵ + Cϵ(eϵ − 1), δ′)-entry-level DP,

respectively. Then, by simple composition of those two, we
complete the proof.
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Privacy budget allocation. In practice, given the cumulative
privacy budget ϵ0 and δ0, we need to decide the values of ϵ,
ϵ2, and ϵ3. Since ϵ is used to obtain the fingerprinted database,
its value should be determined based on the specific database
of interest and the requirements about database utility and
fingerprint robustness (discussed in Section V).

Furthermore, we note that (ϵ2 + ϵ3) is used to obtain the
internal IDs of SPs. Once ϵ is decided, the database owner can
solve for (ϵ2+ϵ3) numerically, i.e.,

(√
2C ln(1/δ′)−C

)
(ϵ2+

ϵ3)+C(ϵ2 + ϵ3)e
ϵ2+ϵ3 = ϵ0 −

(√
2C ln(1/δ′)−C

)
ϵ−Cϵeϵ.

Suppose the numerical solution is (ϵ2 + ϵ3) = ϵ∗. Then, we
need to allocate ϵ∗ to ϵ2 and ϵ3. Inspired by the analysis in
[40], we observe that ϵ2 and ϵ3 control the accuracy of noisy
comparison, i.e., ||Mi(R)−R ||1,1 + µi ≥ Γ + ρi (or equiv-
alently, ||Mi(R)−R ||1,1 − Γ ≥ ρi − µi) in both Algorithms
3 and 4. To boost the accuracy of the noisy comparison, we
minimize the variance of the difference between ρi and µi.
Since they are both Laplace random variables, the variance of
their difference is 2(∆/ϵ2)2+2(∆/ϵ3)

2. Clearly, given ϵ∗, the
variance is minimized when ϵ2 = ϵ3 = ϵ∗/2.

Note that in classical SVT, the database owner does not
respond to all the queries, i.e., it merely reports “⊥” if the
considered noisy comparison is “FALSE” (page 55 [16]), yet,
this is not user-friendly in database sharing, especially, when
the database owner still has remaining privacy budget. In our
proposed SVT-based solution, we make sure all SPs get their
fingerprinted databases as long as they are among the top C
SPs sending the query request. This is achieved by letting the
database owner keep generating new internal IDs for the SPs
until the noisy comparison turns out to be “TRUE”, and this
approach does not violate the design principle of SVT.

VII. EXPERIMENTS

We evaluate the developed entry-level differentially-private
relational database fingerprinting mechanism under both single
and multiple database sharing scenarios.

A. Experiment Setup

Databases. We consider two publicly available databases from
UCI machine learning repository [2]. First is a medium size
nursery school application database, which contains data of
12,960 applicants. Each applicant has 8 categorical attributes,
e.g., “form of the family” (complete, completed, incomplete,
or foster). Each data record is associated with one of the
five labels, i.e., “not recom”, “recommend”, “very recom”,
“priority”, and “spec prior”. Second is a large size Census
database recording 14 discrete or categorical attributes (e.g.,
age, workclass, and marital-status) of 32,561 individuals, in
which each individual is labeled as either ‘> 50K’ or ‘≤
50K’, which represents the income. Since both databases
contain categorical attributes, we need to encode them as
integers before fingerprinting.

Database encoding. Similar to [26], to fingerprint discrete
attributes (e.g., “age” in Census database), the database owner
will first sorts the values in an ascending order and then
divides them into non-overlapping ranges, which are then
encoded as ascending integers starting from 0. For categorical
attributes, e.g., “marital-status” in the census database, the

instances are first mapped to a high dimensional space via the
word embedding. Words (instances) having similar meanings
appear roughly in the same area of the space, and the values
of their integer codes will also be close. In the considered
nursery school application database, the maximum integer
representation of a data entry is 4 (we do not fingerprint the
labels, which will be used in a classification task to evaluate
the utility of the fingerprinted database). Note that we drop
the attribute of “fnlwgt” in the Census database, because it
represents the number of people the census believes a specific
row represents. After dropping the “fnlwgt” attribute, each
row of the Census database can be interpreted as a specific
individual. Besides, we encode “capital-gain”, “capital-loss”,
and “native-country” attributes as binary, because the columns
of “capital-gain” and “capital-loss” are very sparse, and nearly
all “native-country” values are “United-States”. After encod-
ing, the maximum integer representation of a data entry in the
Census database is 15 (we also do not fingerprint the binary
labels, i.e., ‘> 50K’ or ‘≤ 50K’, in order to conduct task
specific utility evaluations).

Sensitivity control on nursery school application database.
Since the integer representations of data entries vary from 0
to 4 in the nursery school application database, the sensitivity
is ∆ = 4. Thus, the proposed mechanism needs to fingerprint
K = log2 4 + 1 = 3 (see Theorem 1) least significant bits of
each data entry. This, however, may significantly compromise
the utility of the fingerprinted database. To control the sensi-
tivity (and hence improve the utility), we make the following
observation. We calculate the fraction of pairwise absolute
differences taking a specific value (between the attributes) and
show the results in Table II. Clearly, in each class, a large
portion of the absolute differences are 0 and 1, and only a
small fraction of them have difference larger than 1. Thus,
in the experiments, we consider sensitivity ∆ = 1 with the
assumption that the different entries in a pair of neighboring
nursery databases can change by at most by 1, otherwise, it
introduces a rare event (e.g., outliers that occurs with very
low probability) in the database. Our approach to control
the sensitivity is similar to the restricted sensitivity [5] (that
calculates sensitivity on a restricted subset of the database,
instead of all possible data records) and smooth sensitivity
[28] (which smooths the data records after partitioning them
into non-overlapping groups). Note that it has been widely
recognized that rare events or outliers consume extra privacy
budget, and this is a common problem in differentially-private
database queries [12], [39], [15], [32]. Controlling local and
global sensitivity in differential privacy is a separate topic, and
it is beyond the scope of this paper.

abs. diff. 0 1 2 3 4
not recom 40% 46.79% 7.08% 5.12% 1%
recommend 93.75% 6.25% 0 0 0
very recom 35.10% 49.71% 10.66% 4.39% 0.13%

priority 36.04% 44.65% 11.31% 5.07% 2.93%
spec prior 50.50% 37.19% 9.01% 3.29% 0

TABLE II. FRACTION OF PAIRWISE ABSOLUTE DIFFERENCES
BETWEEN INSTANCES OF ATTRIBUTES.

Note that for the Census database, we do not control its
sensitivity, because the absolute differences between attributes
of individuals are more evenly distributed. Since the maximum
integer representation of a data entry in the Census database
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is 15, the sensitivity is ∆ = 15, and hence, the proposed
mechanism needs to fingerprint K = ⌊log2 15⌋ + 1 = 4 least
significant bits of each data entry.

Post-processing. After fingerprinting a database (R), some
entries may have integer representations that are outside the
domain of the original database. For example, in the Nursery
school database, the maximum integer is 4, i.e., “100”, after
fingerprinting, it may become 5, i.e., “101”, which is not in the
original database domain. Thus, we also need to post-process
the resulting database (M(R)) to eliminate entries that are not
in the original domain. Otherwise, the database recipient can
understand that these entries are changed due to fingerprinting.
Due to the post-processing immunity property of differential
privacy, there is no privacy degradation in this step. Even
though the post-processing may alter some fingerprinted en-
tries, it has negligible impact on the fingerprint robustness,
because it only changes a small fraction of fingerprinted
entries, and in the fingerprint extraction phase, we determine
the value of each bit in the fingerprint by counting how many
times it has been extracted as 1 or 0 followed by majority
voting, i.e., each bit of the fingerprint is recovered by the
majority voting on the positions marked by this fingerprint bit
(i.e., Line 12 in Algorithm 2. Generally, post-processing steps
are able to make a fingerprinted database meet the domain
requirements so as to achieve better utility in downstream
applications. For example, post-processing steps can let a
fingerprinted database preserve the column- and row-wise data
correlations and the covariance matrix of the database [26],
which are frequently utilized to establish predictive models,
e.g., regression and probability fitting.

Baseline Methods. We compare our mechanism (that simul-
taneously achieves privacy and liability guarantees) with six
baselines summarized in Table III. In particular, baselines (i),
(ii), and (iii) are naı̈ve two-step approaches. Baseline (iv), dis-
cussed in Section II, is a one-step solution that brings together
data sanitization and fingerprinting. Baselines (v) and (vi)
achieve data perturbation and fingerprinting only, respectively.
In baselines (i) and (v), data perturbation is achieved via local
DP. In baseline (ii), data synthesis is obtained using DPSyn [9],
[33], which generates differentially-private version of given
databases by clustering similar attributes, and then perturbing
the cell counts of the joint histograms for each cluster. The
fingerprinting scheme used in all baselines (i), (ii), (iii), and
(vi) is the database fingerprinting scheme developed in [35].

baseline (i) data perturbation followed by fingerprinting two-step
baseline (ii) data synthesis followed by fingerprinting two-step
baseline (iii) k-anonymity-based fingerprinting two-step
baseline (iv) privacy-protection fingerprinting via Gaussian noise [20] one-step
baseline (v) data perturbation only via local differential privacy no liability
baseline (vi) fingerprinting only via mechanism developed in [35] no privacy

TABLE III. COMPARING BASELINES CONSIDERED IN THE
EXPERIMENTS. NOTE THAT BASELINES (I)-(IV) PROVIDE BOTH PRIVACY

AND LIABILITY GUARANTEES DURING DATABASE SHARING. BASELINE (V)
ONLY PROVIDES PRIVACY GUARANTEE (I.E., NO FINGERPRINT

ROBUSTNESS), AND BASELINE (VI) ONLY PROVIDES FINGERPRINT
ROBUSTNESS (I.E., NO PRIVACY GUARANTEE).

Experiment Outline. To show the performance of our pro-
posed mechanism, we conduct extensive experiments focusing
on fingerprint robustness and database utility. This is because
we cannot directly compare the privacy guarantees with the

baselines, as the privacy definitions vary for different base-
lines; our mechanism uses entry-level DP, whereas baseline
(i) and (v), (iii), and (ii) and (iv), respectively, adopt local
DP, k-anonymity, and conventional centralized DP. To enhance
readability, we lists the considered experiments as follows.

In Section VII-B1, we compare the fingerprint robustness
with all baselines (except for (v)) under the following scenar-
ios: baseline (i) changes the same amount of data with our
mechanism via LDP perturbation using the same ϵ with us
and fingerprinting via [35]; baseline (vi) directly changes the
same amount of data with our mechanism; baselines (ii) and
(iv) use the same ϵ values with us; and baseline (iii) adopts
2-anonymity. We do not compare with baseline (v) because
it does not provide fingerprint robustness. We cannot require
baselines (ii), (iii), and (iv) change the same amount of data
entries with us because (ii) adopts DPSyn to synthesize a
completely new database using the probabilistic generative
model, (iii) generalizes a significant amount of data entries
to achieve 2-anonymity, and (v) can change all data using
continuous Gaussian noise.

In Section VII-B2, we compare database utilities achieved
by all methods when: baselines (i), (ii), (iv), and (v) adopts
the same ϵ values with us; baseline (iii) adopts 2-anonymity;
and baseline (vi) changes the same amount of data entries
with our mechanism. Note that same ϵ does not lead to the
same privacy guarantee due to different privacy definitions (as
discussed before).

In section VII-C, we study the cumulative privacy loss
when our mechanism is repeatedly applied to share databases
with different SPs. We do not compare with other baselines,
because our mechanism is the only one that applies Advanced
Composition Theorem via SVT and the others just apply
simple (linear) composition, so our mechanism is guaranteed
to reduce cumulative privacy loss by an order of O(

√
C) if

the database is shared C times [16].

B. Evaluations for One-time Sharing

We first consider that the database owner only releases the
database with one SP. Thus, only Algorithm 1 is invoked.

1) Fingerprint Robustness: Among common attacks
against database fingerprinting mechanisms (i.e., random flip-
ping attack, subset attack, and superset attack [35]), random
flipping attack is shown to be the most powerful one [35],
[50]. This is because the flipped data entries might create a
fingerprint pattern that misleads the database owner during the
fingerprint extraction phase [35], [51]. Thus, we investigate
the fingerprint robustness of the proposed mechanism and
the baselines against this attack. In Section VIII, we discuss
how to make the proposed mechanism robust against more
sophisticated correlation attacks [26]. In particular, in favor of
the malicious SP, we let the malicious SP randomly flip 50%
of the bit positions in its received copy of the database. Then,
we measure the fingerprint robustness using the number of bit
matches between the malicious SP’s fingerprint and the one
extracted from R (the compromised database).

As per the experiment outline discussed in Section VII-A,
for the Nursery database we select ϵ from {1, 2, · · · , 7}.
In Figure 4, we scatter the values of accuracy and number

13



Fig. 4. Robustness comparison of fingerprinted Nursery databases.

of matched fingerprint bits obtained by all methods. Note
that higher accuracy suggests higher utility of the obtained
databases, and higher number of matched bits suggest higher
robustness against 50% random flipping. Clearly, the databases
obtained by our mechanism (represented by red dots) achieve
the highest robustness given the same database accuracy and
the highest accuracy given the same robustness. In particu-
lar, we outperform baseline (i), because the inserted noises
(marks) generated by our mechanism serve the purposes of
privacy protection and fingerprinting simultaneously, whereas
(i) inserts noises twice to protect privacy and perform finger-
printing separately. We achieve higher robustness than baseline
(vi), as (vi) only fingerprints one attribute for each selected
row, and our mechanism can fingerprint multiple attributes.
Baseline (iii) leads to lower database accuracy, because to
achieve 2-anonymity, it needs to change all entries in some
columns due to attributes generalization. Baselines (ii) and (iv)
result in the lowest database accuracy, because they synthesize
a new database and add continuous Gaussian noise to the
original database, respectively. It is noteworthy that although
baseline (iv) is a one-step solution like ours, it has the lowest
robustness, because it needs to use learning algorithms to fit
the inserted Gaussian noise, re-calculate the corresponding
variance, and then recover the inserted fingerprints. Thus, when
a large portion of data entries have been compromised, the
obtained variance is highly inaccurate, so does the recovered
fingerprints. For example, when ϵ ≥ 5, baseline (iv) can only
achieve less than 50 fingerprint bit matches (out of 128), which
suggests that the malicious SP can avoid being accused. This
has been empirically validate in [26]: as long as a malicious
SP can compromise more than half of the fingerprint bits
(e.g., achieving less than 64 matches out of 128), the database
owner will accuse another innocent SP with large probability.
In contrast, when ϵ ≥ 5, our mechanism can still achieve more
than 64 bit matches, which suggests that the malicious SP will
end up being uniquely identifiable.

For the Census database, we select ϵ from {6, 7, · · · , 12}
to achieve high accuracy for all the methods. The comparison
of fingerprint robustness is shown in Figure 5. Similar to the
Nursery database, our mechanism also outperforms all base-
lines in terms of database accuracy and fingerprint robustness.

Fig. 5. Robustness comparison of fingerprinted Census databases.

2) Utility of the Shared Database: To show the utility
guarantees of the proposed entry-level DP fingerprint mech-
anism, we conduct the comparison by considering specific
applications, where we use fingerprinted databases (ours and
the baselines) to do linear SVM classification and principal
component analysis (PCA). Please refer to [21] for the exper-
iments considering task-independent comparison, e.g., change
of variance of attributes and the accuracy of SQL queries.

To perform classification, we adopt a multi-class support
vector machine (SVM) classifier and use 65% of data records
for training and the rest for testing. We evaluate the utility
of various fingerprinted databases by comparing the finger-
printed testing accuracy (i.e., SVM classifier trained on
fingerprinted training data and then tested on the original
testing data) with the original testing accuracy (i.e., SVM
classifier trained on the original training data and then tested
on the original testing data). Thus, the smaller the difference
between fingerprinted testing accuracy and original testing
accuracy (i.e., accuracy loss), the higher the utility.

The utility for PCA is defined using the total deviation,
TTLDEV =

∑T
i=1 |λi − ṽi

TCṽi|, here T is the number of
attributes (T is 8 and 13 for Nursery and Census databases, re-
spectively), C is the empirical covariance matrix of the original
(non-fingerprinted) database, λi values are the eigenvalues of
C, and ṽi vectors are the eigenvectors of the empirical covari-
ance matrix of fingerprinted database. TTLDEV measures the
deviation of the variance (of the fingerprinted database) from
λi in the direction of the ith component of C. The smaller
TTLDEV is, the higher the utility.

In Figure 6 (a) and (b) by varying ϵ from 0.25 to 2,
we compare the utilities for SVM and PCA achieved by our
mechanism and all baselines on the Nursery database. Clearly,
our mechanism (red lines with pentagrams) achieves higher
database utilities in both applications. Particularly, for baseline
(i), a large portion of data entries are substituted with other
values with high probability when ϵ is small, which leads to
inaccurate task-specific applications, and fingerprinting after
LDP perturbation further compromises the utility. Baseline
(ii) can outperform baseline (i), because DPSyn generates the
synthetic database by sampling from the noisy marginals of
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Fig. 6. Database utility in task-specific applications.

the clustered attributes and also involves techniques proposed
in [43] to constrain the noisy marginals to be consistent with
one another [9]. However, baseline (ii) still achieves lower
utility compared with our mechanism, because the synthetic
database is further distorted by fingerprint insertion. Baseline
(iii) achieves the lowest utility in all two-step approaches,
because it needs to modify a lager portion of data entries to
achieve 2-anonymity. Thus, two-step approaches are highly
suboptimal. Although baseline (iv) is a one-step approach,
it has the worst utility among all the mechanisms, because
it introduces Gaussian noises that completely overwhelm the
original data. Baseline (v) leads to higher utility than baseline
(i), because it does not involve fingerprinting. Although base-
line (vi) has the similar performance with us, it cannot provide
any privacy guarantees.

The same experiment results using the Census database
when ϵ varies from 6 to 9 are shown in Figure 6 (c) and (d).
As discussed in Section VII-B1, we consider high ϵ values to
achieve high utility for all mechanisms. Clearly, our proposed
mechanism still outperforms all baselines in terms of both
accuracy loss of SVM and total deviation of PCA. Note that
the accuracy loss on Census data is much less than the Nursery
data, because Census data is highly unbalanced. The total
deviation is much higher for the Census data, because it has
more columns and large value of sensitivity, which lead to a
large Frobenius norm of the empirical covariance matrix.4

C. Evaluations for Multiple Sharing

Next, we consider the scenario where at most 100 SPs
query the entire database over time in a sequential order (i.e.,
C = 100). As discussed in Section VI, the database owner per-
forms the noisy comparison (||Mc

i (R)−R ||1,1+µi ≥ Γ+ρi,
where Γ is the fingerprint density, µi and ρi are Laplace
noises) to determine the proper internal IDs for the SPs to
generate the fingerprinted databases. In the experiment, we set
Γ = (1/2 + 1/

√
12)∆pNK. The reason is that according to

4We do not fine-tune the training parameters in SVM and PCA algorithms,
because it is out of the scope of this paper.

Corollary 1, the expected value of ||Mc
i (R) − R ||1,1 falls

in [0,∆pNT ]. Since we do not have any assumption on the
database, and the pseudorandom number generator U generates
each random number with equal probability, we approximately
model ||Mc

i (R) − R ||1,1 as a uniformly distributed random
variable in the range of [0,∆pNT ]. Then, its mean and stan-
dard deviation are ∆pNT/2 and ∆pNK/

√
12, respectively.

Moreover, we consider the cumulative privacy loss as
ϵ0 = 40 and δ0 = 2 ∗ 10−3. If ϵ0 < 40 and the database
owner still wants to generate fingerprinted databases with the
identical privacy and fingerprint robustness guarantees as when
ϵ0 = 40, it will end up sharing its database with fewer
number of SPs. To achieve a decent database utility, we set
the privacy budget to generate the entry-level differentially-
private fingerprinted database as ϵ = 0.5. Then, by solving the
privacy budget allocation problem (Section VI-B) numerically,
we have ϵ2 + ϵ3 = 0.002 approximately.

We first investigate the impact of privacy allocation be-
tween ϵ2 and ϵ3 on the total number of trials to determine
the proper internal IDs for all 100 SPs. We take the Nursery
database as an example, vary the ratio between ϵ2 and ϵ3
from 9 : 1 to 1 : 1, and show the results in Table IV. We
observe that as the difference between ϵ2 and ϵ3 decreases
(their ratio decreases), Algorithm 4 terminates with fewer
internal ID generation trials. Especially, when ϵ2 : ϵ3 = 9 : 1,
81 (181 instead of 100) additional trials are made, whereas,
when ϵ2 : ϵ3 = 1 : 1, only 56 (156 instead of 100) additional
trials are made. Since the cumulative privacy loss is identical
for the different total number of trials reported in Table IV,
this suggests that when ϵ2 = ϵ3, the internal ID generation
efficiency is higher from the perspective of the data recipients
(i.e., the probability that the database owner can generate
a proper internal ID for an SP in 1 or 2 trials increases).
This finding validates our suggestion of equally dividing the
privacy budget between ϵ2 and ϵ3 to reduce the number
of trials to generate proper internal IDs. Besides, we also
would like to highlight that by adopting SVT, we significantly
reduce the cumulative privacy loss, because otherwise, the
privacy loss will be (ϵ+ ϵ2 + ϵ3)× (Total No. of trials). For
instance, when Total No. of trials = 181, the privacy would
be ϵ = (0.5 + 0.02)× 181 = 90.862 without SVT (compared
to a cumulative privacy loss of 40 with SVT).

ϵ2 : ϵ3 9 : 1 7 : 1 5 : 1 3 : 1 1 : 1
No. of trials 181 177 173 165 156

TABLE IV. IMPACT OF THE RATIO BETWEEN ϵ2 AND ϵ3 ON THE TOTAL
NUMBER OF INTERNAL ID GENERATION TRIALS FOR 100 SPS.

VIII. DISCUSSION

Our work is a first step in uniting provable privacy guar-
antee and database fingerprinting. We believe that it will draw
attention to other challenges and urgent research problems,
which we plan to investigate in the future.

Mitigation of correlation attacks. Ji et al. [26] have devel-
oped a mitigation technique to alleviate the correlation attacks
against database fingerprinting. Their technique modifies a fin-
gerprinted database (via optimal transport technique) to make
sure that it has similar column- and row-wise joint distributions
with the original database. Since their technique only changes

15



the non-fingerprinted data entries and it can be applied as a
post-processing step after any fingerprinting mechanism, it can
also be utilized following our mechanism to defend against the
correlation attacks. In case of such an integration, our privacy
guarantee will still hold because of the immunity property of
differential privacy for post-processing [16].

Defending against collusion attacks. Another widely studied
threat is the collusion attack where multiple malicious SPs
ally together to generate a pirated database from their unique
fingerprinted copies with the hope that none of them will be
traced back. Several works have proposed collusion-resistant
fingerprinting mechanisms in the literature [7], [6], [48], [42].
To develop a entry-level DP and collusion-resistant finger-
printing mechanism, one solution is to replace the fingerprint
generation step (i.e., Line 3 of Algorithm 1) with the Boneh-
Shaw (BS) codes [6] and decide p (the probability of changing
one insignificant bit of an entry) based on ϵ and the number
of 1’s in the BS codeword. We will explore this extension in
future work.

Two-step solutions versus our mechanism. Making the two-
step solutions outperform our mechanism is still an open
problem. Since currently, our mechanism treats each attribute
equally sensitive. One potential approach is to take advantage
of the semantic meaning of the attributes and then inject vary-
ing amounts of noise and insert different density of fingerprints
to various portions of the database based on their sensitive
level (e.g., some attributes like salary or health conditions may
be more sensitive or private than others). However, this two-
step approach will require domain experts on the database and
can involve extra data analysis before it is subject to privacy
protection and fingerprinting.

IX. CONCLUSIONS

In this paper, we have proposed a novel mechanism that
unites provable privacy and database fingerprinting for shar-
ing relational databases. We first devised a bit-level random
response scheme to achieve ϵ-entry-level DP guarantee for
the entire database, and then developed a concrete entry-
level DP database fingerprinting mechanism on top of it. We
have also provided the closed form expressions to characterize
the connections between database utility, privacy protection,
and fingerprint robustness. Finally, we developed a SVT-based
solution to share entry-level DP fingerprinted databases with
multiple recipients, and at the same time, control the cumula-
tive privacy loss. Experimental results on two real relational
databases show that we can achieve higher fingerprint robust-
ness than a state-of-the-art database fingerprinting mechanism
and achieve higher database utility than other baselines.
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APPENDIX A
PROOF OF PROPOSITION 2

Proof: The fingerprinting mechanism only changes the
last K bits of selected data entries, thus, we have

E
[∣∣∣r̃i[t]− ri[t]

∣∣∣]
=E
[∣∣∣ K∑
k=1

r̃i[t, k]2
r̃i[t,k]−1 − ri[t, k]2

ri[t,k]−1
∣∣∣]

=E
[∣∣∣ K∑
k=1

(ri[t, k]⊕B)2ri[t,k]⊕B−1 − ri[t, k]2
ri[t,k]−1

∣∣∣]
=E

[∣∣∣∑K
k=1(ri[t, k] +B − 2ri[t, k]B)2ri[t,k]+B−2ri[t,k]B−1 − ri[t, k]2

ri[t,k]−1
∣∣∣]

=
∣∣∣ K∑
k=1

(
(1− ri[t, k])2

−ri[t,k] − ri[t, k]2
ri[t,k]−1

)∣∣∣p
=
∣∣∣ K∑
k=1

(
ri[t, k]2

ri[t,k]−1 − ri[t, k]2
ri[t,k]−1

)∣∣∣p.
Since

∑K
k=1 ri[t, k]2

ri[t,k]−1 is the decimal representation of
the complement of the last K bits of ri, and according to
Definition 3,

∑K
k=1

(
ri[t, k]2

ri[t,k]−1− ri[t, k]2
ri[t,k]−1

)
falls
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in the range of [−∆,∆], so its absolute value falls in [0,∆],
which completes the proof.

APPENDIX B
PROOF OF PROPOSITION 3

Proof: We let binary vector τt ∈ {0, 1}K (or τz ∈
{0, 1}K) represent the K mark bits embedded to entries of
the tth (or zth) attribute. || · ||0 denotes the l0 norm, which
counts the number of nonzero entries in a vector. π[2] and ω[2]

are the binary representations of π and ω, respectively. Then,
we have

Pr(R̃[t] = π, R̃[z] = ω)

=
∑

τt∈{0,1}K

∑
τz∈{0,1}K

Pr
(
R[t] = π[2] ⊕ τt,R[z] = ω[2] ⊕ τz

)
× p||τt||0(1− p)K−||τt||0p||τz||0(1− p)K−||τz||0

=Pr
(
R[t] = π[2],R[z] = ω[2]

)
(1− p)2K

+
∑
τt∈{0,1}K/0

∑
τz∈{0,1}K/0 Pr

(
R[t] = π[2] ⊕ τt,R[z] = ω[2] ⊕ τz

)
× p||τt||0(1− p)K−||τt||0p||τz||0(1− p)K−||τz||0 .

By denoting the second summand in the above equation as
♢, we have

♢ ≤ Pr
max

(R[t],R[z])×

( ∑
τt∈{0,1}K/0

∑
τz∈{0,1}K/0

p||τt||0(1− p)K−||τt||0p||τz||0(1− p)K−||τz||0

)
= Pr

max
(R[t],R[z])×

×

( ∑
τt∈{0,1}K/0

p||τt||0(1− p)K−||τt||0

)

×

( ∑
τz∈{0,1}K/0

p||τz||0(1− p)K−||τz||0

)

= Pr
max

(R[t],R[z])
(
1− (1− p)K

)2
.

Similarly, we also have ♢ ≥ Prmin(R[t],R[z])
(
1− (1− p)K

)2
,

thus, the proof is completed.

APPENDIX C
ANALYSIS OF Prbst rnd IN RANDOM BIT FLIPPING ATTACK

Note that a rational database owner will not change more
than 50% of the bit positions in a database, because it will
significantly compromise the database utility, and a malicious
SP can flip the bits back and then launch an attack.

First, we show how to determine D (number of bit matches
with the malicious SP’s fingerprint) given C (number of times
a database can be shared), and L (length of fingerprinting
string). If the database owner shares its database with C
different SPs. To make the extracted fingerprint have the
most bit matches with the malicious SP, it requires that the
probability of having more than D bit matches is higher
than 1/C, i.e.,

(
L
D

)
( 12 )

D( 12 )
L−D ≥ 1

C , which can be solved
analytically.

One can easily check that the closed form expression of
Prbst rnd in terms of p is

Prbst rnd =
∑NKT

m=1

(∑
wl∈W,l∈[1,L]

∑
LD

∏
l∈LD

pl(
1
L )

wl

)(
NKT
m

)
(2p)m(1− 2p)NKT−m,

which can be obtained by marginalizing all instances of mali-
cious SP’s fingerprint, all collections of D fingerprint bits of it,
and the number of fingerprinted bits m. To show that higher
p leads to more robustness against the random bit flipping
attack, it is equivalent to show that Prbst rnd is monotonically
increasing with p (0 < p < 0.5). To this end, we define func-
tion f(m) =

∑
wl∈W,l∈[1,L]

∑
LD

∏
l∈LD

pl(
1
L )

wl (m is embedded
as a parameter of set W , i.e., W = {w1, w2, · · · , wL >
0|
∑L
l=1 wl = m}. Then, Prbst rnd represents the expected

value of f(m),m ∼ Binomial(NKT, 2p). As a result, it
is sufficient to show that f(m) is monotonically increasing
with m. First, we observe that pl (see Section V-C1, pl =∑⌊wl

2 ⌋
q=0

(
wl

q

)
γqrnd(1− γrnd)

wl−q) is the cumulative distribution
function of a binomial distribution function, which is mono-
tonically increasing with wl, thus the multiplication of all pl’s,
i.e.,

∏
l∈LD

pl is increasing with m =
∑
l wl. Second, it is

easy to check that the carnality of W is m!S(w,L), where
S(w,L) represents Stirling number of the second kind (i.e.,
the number of ways to partition a set of w objects into L non-
empty subsets) [19]. Since m! grows faster then Lwl as m
increases (in real-life applications, we have m≫ L≫ lnN ),
we can conclude that f(m) is monotonically increasing with m
(the number of fingerprinted bit positions). When 0 < p < 0.5,
Prbst rnd can be characterized as the summation of monoton-
ically increasing functions with respect to m and p, which
suggests that the higher the value of p, the more robust of the
proposed fingerprinting mechanism is against the random bit
flipping attack.

APPENDIX D
ANALYSIS OF G IN CORRELATION ATTACK

As per proposition 3,
∣∣∣Pr(R̃[t] = π, R̃[z] =

ω
)
− Pr

(
R[t] = π,R[z] = ω

)∣∣∣ falls in the range of
[0,max{|A|, |B|}], where A and B, respectively, are
A = Pr

(
R[t] = π,R[z] = ω

)(
(1− p)2K − 1

)
+ Prmin(R[t],R[z])

(
1− (1− p)K

)2
,

B = Pr
(
R[t] = π,R[z] = ω

)(
(1− p)2K − 1

)
+ Prmax(R[t],R[z])

(
1− (1− p)K

)2
.

Without any assumption on the database, we consider each of
the point τ (threshold) in [0,max{|A|, |B|}] has equal proba-
bility density [26]. Thus, G =

1−
∏

z∈[1,T ],z ̸=t

∏
ω

τ
max{|A|,|B|}

(1−(1−p)K) Pr(R[t]=π)
.

Let λ = 1− (1− p)K ∈ [0, 1− ( 12 )
K ], then, we have

A = Pr
(
R[t] = π,R[z] = ω

)(
(1− p)2K + 1

)
(−λ) + Prmin(R[t],R[z])λ2,

B = Pr
(
R[t] = π,R[z] = ω

)(
(1− p)2K + 1

)
(−λ) + Prmax(R[t],R[z])λ2.

Thus, G =
1−( τ

O(λ)
)
∑

z∈[1,T ],z ̸=t kz

O(λ) , and kz is the number of
possible instances of attribute z. Since both the numerator
and denominator increases with p, but the denominator grows
with a much higher rate, G decreases as p increases.
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