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Abstract. Researchers need a rich trove of genomic datasets that they can leverage to gain a better
understanding of the genetic basis of the human genome and identify associations between pheno-
types and specific parts of DNA. However, sharing genomic datasets that include sensitive genetic
or medical information of individuals can lead to serious privacy-related consequences if data lands
in the wrong hands. Restricting access to genomic datasets is one solution, but this greatly reduces
their usefulness for research purposes. To allow sharing of genomic datasets while addressing these
privacy concerns, several studies propose privacy-preserving mechanisms for data sharing. Differen-
tial privacy is one of such mechanisms that formalize rigorous mathematical foundations to provide
privacy guarantees while sharing aggregated statistical information about a dataset. Nevertheless,
it has been shown that the original privacy guarantees of DP-based solutions degrade when there
are dependent tuples in the dataset, which is a common scenario for genomic datasets (due to the
existence of family members).
In this work, we introduce a new mechanism to mitigate the vulnerabilities of the inference attacks
on differentially private query results from genomic datasets including dependent tuples. We propose
a utility-maximizing and privacy-preserving approach for sharing statistics by hiding selective SNPs
of the family members as they participate in a genomic dataset. By evaluating our mechanism on a
real-world genomic dataset, we empirically demonstrate that our proposed mechanism can achieve
up to 40% better privacy than state-of-the-art DP-based solutions, while near-optimally minimizing
utility loss.

Keywords: Genomic dataset · Differential privacy · Dependent tuples.

1 Introduction

As technologies improve the cost and scale of sequencing, it has become possible to sequence genomes
from large cohorts of patients. Today, researchers have access to large genomic datasets, whereby they can
study associations between variants and complex traits. However, as shown by earlier studies, the public
availability of genomic data - even in anonymized form - raises serious privacy concerns [1]. Hence, many
institutions (i.e., data owners who collect genomic data), rather than publicly releasing their genomic
datasets, provide limited access to these datasets through queries. Such queries typically seek to extract
statistical information about the dataset (referred to as a ”statistical dataset”). They are formed and
submitted by the researchers, computed at the data owner institution, and only the final results are shared
with the querying researchers. One prominent example of such an approach is the access to the results of
genome-wide association studies (GWAS) [2].

Although this approach provides stronger privacy protection for the dataset participants, previous
work has shown that such statistical genomic datasets are prone to membership and attribute inference
attacks [3]. An adversary, using the results of the queries, the genotype of a target, and the publicly
available minor allele frequencies (MAFs) of the single nucleotide polymorphisms (SNPs) used in the
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study, can infer the membership of the target to the corresponding dataset (or to the case group of the
corresponding GWAS) [4] . This attack is considered serious because in most cases, dataset participants
are associated with known sensitive information (e.g., cancer predisposition).

Differential privacy (DP) [5] is one of the privacy protection concepts that has received widespread
popularity for sharing aggregate statistics from human genomic datasets due to its theoretical guarantees [2,
?]. Such that, even if there is only one different tuple in two datasets (called neighboring datasets), it is
hard to differentiate between the query results of these two datasets. The probability of distinguishing the
results of the neighboring datasets is controlled by a parameter called privacy budget ϵ. However, DP has
a known drawback as it makes no assumption about the correlation between dataset tuples. This may
degrade the privacy guarantees of DP and give the adversary a stronger ability to extract more sensitive
information if the dataset includes dependent tuples, which is a common situation for genomic datasets as
genomes of family members are correlated. Previous work show how dependency between dataset tuples
may reduce the privacy guarantees of DP [6–8] and propose general mechanisms to tackle this problem.
Recently, [9, 10] analyze and show the privacy risk due to the inference attacks on differentially-private
query results by exploiting the dependency between tuples in a genomic dataset. To mitigate this privacy
risk, [9] formalize the notion of ϵ-DP for genomic datasets with dependent tuples to avoid the inference of
sensitive information by any adversary with prior knowledge about the tuples correlation.

However, to provide privacy guarantees for the dependent tuples in genomic datasets, existing DP-based
solutions suggest changing the value of the privacy parameter ϵ (i.e., adding more noise to the released
statistics based on the number of dependent tuples and the strength of relationship between them). Such
higher noise amounts significantly degrade the utility of the shared GWAS statistics, especially when the
query results also include data from independent tuples in the dataset. On the other hand, medical research
necessitates highly accurate information for high-quality and effective research outcomes. Therefore, it is
also crucial to develop utility-preserving countermeasures for this privacy risk.

In this work, we propose a novel privacy-preserving and utility-preserving mechanism for sharing statis-
tics from genomic datasets to attain privacy guarantees while taking into consideration the dependency
between tuples. As discussed, the main reason for the aforementioned privacy risk is the existence of depen-
dent tuples in the genomic datasets due to familial relationships. Therefore, our goal is to reduce the level
of such dependency without significantly weakening the utility by adding more noise to the released statis-
tics as proposed in the state-of-the-art mechanisms [9, 10, 6–8]. To achieve this, inspired by our previous
work [11], we propose an optimization-based countermeasure to selectively hide genomic data of dataset
participants to distort the dependencies (familial relations) among them without significantly degrading
dataset query responses, thus, the utility.

The key idea of our proposed ”selective hiding” mechanism is to hide some selected SNPs of family
members (as they join the genomic dataset during the dataset collecting step) to 1) reduce the kinship
relationship between them, and 2) keep the utility of the shared GWAS statistics high. We consider a
static genomic dataset, which has no updates, and hence the released private statistics depend on the one-
time updated GWAS dataset. By doing so, the constructed GWAS dataset includes only the obfuscated
genomes of the dependent tuples. Thus, in case of a data breach, familial relationships between the GWAS
participants are also protected. Also, the proposed method selectively hides only the dependent tuples,
keeping the genomes of independent tuples intact (which improves utility).

We assume that a potential adversary can use side-channel leaks as public records, social media sites,
or own prior knowledge about the family members who participated in a genomic study for performing a
targeted attack (i.e., aimed at a specific, small group of people). The adversary uses this information along
with the published GWAS statistics in order to infer sensitive attributes about the dataset participants.
Even if the adversary is not sure about the participation of the family members in the dataset or the
dependencies between the dataset participants (i.e., kin relationships), the adversary can infer the kinship
coefficient between dataset participants by issuing several well-designed queries to the dataset. We evaluate
the proposed algorithm against such an adversary by using real-life genomic datasets. Our proposed DP-
based mechanism can prevent the adversary from utilizing the dependencies among the dataset tuples
to infer more sensitive attributes about dataset participants. In other words, we are aiming at achieving
the privacy and utility guarantees of the standard DP assuming all the participants of the dataset are
independent, without increasing the added noise to the query results. Hence, using our mechanism allows
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releasing any differentially private genomic query over GWAS. These queries include but are not limited
to 1) count or cohort discovery : to query how many participants in the dataset satisfy given criteria, 2) χ2

and p-values association tests: compute χ2 and p-value statistics for an SNP, or 3) minor allele frequency
(MAF): to compute the frequency of which the rare nucleotide occurs at a particular SNP. Considering
our adversarial scenario (discussed in detail in Section 3), our results show that the proposed approach
can near-achieve both the privacy and utility guarantees of standard DP (i.e., under independent tuples
assumption) compared to existing work. As a result of our proposed countermeasure, dataset owners will
share data realizing that the privacy of the dataset participants, including families, will be protected. Also,
families will be more open to donating their data to medical datasets for research knowing their privacy
is uncompromised. Finally, researchers will know that they receive high-utility information from medical
datasets.

The rest of this paper is organized as follows. Section 2 presents related prior works on genomics
privacy, DP mechanisms under dependent tuples, and our contributions. Section 3 explores our privacy
threat model, followed by Section 4, which explains our approach. In Section 5 we evaluate our proposed
strategy and compare it to the state-of-art mechanisms. Section 6 presents conclusions and highlights
future research directions that are pointed by this paper.

2 Related Work

In this section, we summarize the state-of-the-art published studies on genomic privacy and differential
privacy in particular.

2.1 Privacy of Genomic Data

In recent years, privacy-preserving publishing of genomic data has received much attention. One of the
widely-used promising privacy-preserving solutions is the DP framework. DP provides rigorous mathe-
matical mechanisms for limiting the information leakage through adding noise to the statistics results in
GWAS [2, 12, 13]. We provide all the theoretical details about DP in Section 1.2 in the Supplementary
Materials. Existing works basically utilize the privacy guarantee of DP as a protective measure against
inference attack scenarios (e.g., membership attack discovered by [4]) even if the attacker has access to
external auxiliary information. [12, 13, 2] proposed differentially-private algorithms to release the aggregate
human genomic statistical results from genomic datasets as GWAS. Using a controlled amount of noise
from Laplace distribution [14], helps enhance the privacy of all participants in a GWAS. In these algorithms,
researchers submit genomic queries e.g., cell counts, MAF, p-value and χ2 statistics, and receive the query
results in a privacy-preserving manner through DP algorithms. However, these proposed DP mechanisms
assume that all the dataset tuples are independent, which may degrade the privacy guarantees when such
correlations exist between the tuples in the dataset.

2.2 Differential Privacy under Dependent Tuples

The adversary can exploit auxiliary channels to get information about the tuples correlation within the
genomic dataset. [15] was the first to show this DP vulnerability. Therefore, they propose the Pufferfish
framework [16] as a generalization of DP to handle this threat. Following the Pufferfish, several studies [17,
18, ?,?] provide perturbation mechanisms to handle the correlation between tuples for various applications.
Recently, [6] show that an adversary can utilize the pairwise dependencies within a location dataset to
predict the participant’s location from the differentially private query results [6]. To mitigate this privacy
threat, [6] propose a Laplace mechanism defined as dependent differential privacy (DDP) to tackle the
pairwise correlation between any two tuples in the dataset. To improve the privacy and utility guarantees of
[6], [8] present a new definition of the DDP, which can handle numeric and non-numeric queries, to address
any adversary with arbitrary correlation knowledge. Moreover, [9, ?] discuss attribute and membership
inference attacks against differential privacy mechanisms, when the datasets include dependent tuples. As
a countermeasure for these attacks, [9] adjust the global sensitivity of the query before applying Laplace
perturbation mechanism (LPM) to the query results.
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2.3 Contribution of This Work

DP-based solutions that aim at addressing the privacy risks due to the existence of dependent tuples in
statistical datasets (including GWAS), require the addition of high noise values to the results of statistics
queries. Hence, it causes a significant loss in the utility of the query responses. In this work, we propose a
different approach to address the same problem. Our proposed solutions rely on one-time selective masking
of genomic loci in a GWAS dataset to 1) decrease the estimated kinship coefficients between relatives in the
dataset, 2) provide privacy against an adversary that utilizes correlations in the published statistics, and
3) provide privacy for dataset participants (e.g., against kinship inference) in case the dataset is breached.
Other recent studies have attempted to propose general mechanisms to tackle kinship privacy such as [19],
which target interdependent privacy in their work. Here, we compare our model (in terms of privacy and
utility) with the existing similar approaches (e.g., [9] under the same goal of sharing DP-based query
results from genomic datasets with dependent tuples. Our results show that the proposed scheme provides
both better privacy and higher utility than the existing solutions.

3 System and Threat Models

The dataset owner maintains a statistical dataset D and responds to users’ statistical queries. To provide
statistical information about the dataset in a privacy-preserved way, the dataset owner computes random-
ized query results A(D) using LPM-based DP (as in Section 1.2 in the Supplementary Materials), and
sends it back to the users. The adversary in our scenario can be one of the users. The adversary can send
various statistical queries to the dataset. In recent work, we discuss the vulnerability of dependent tuples
in a statistical dataset due to different statistical queries (e.g., count, MAF, χ2 statistics) and [10, 9]. Here,
for simplicity, we focus on a ”count query”, in which the adversary forms its query asking about the sum
of values of a specific SNP j among the dataset participants sharing the same demographic data, such
as location or age (we assume an SNP value of 0, 1, or 2, representing the number of its minor alleles).
Limiting the scope of the query to a small number of dataset participants allows the adversary to have a
higher inference power about the sensitive genomic information of a target, especially if the query result
is computed over the target and target’s family members. The kinship data is not available in the GWAS
studies due to the sensitivity of family information. However, we consider a realistic targeted attack sce-
nario in which the adversary may know that a family participated in a genomic study. The adversary can
infer the participation of the family members using other side-channel leaks as public records, social media
sites, or personal knowledge for performing a targeted attack (aimed at a specific, small group of people).
Alternatively, the adversary can also estimate the kinship coefficients between the dataset participants
using the responses to its well-designed queries. We show the results of kinship coefficients estimation in
Section 5 in the Supplementary Materials. With the availability of such information, considering an at-
tribute inference attack, in which 1) the adversary does not have any prior knowledge about genotypes of
individuals in the dataset, and 2) the goal of the adversary is to infer genomic data of a target individual
using the released query results, we have the following assumptions:

– The adversary knows the membership information of all individuals in the dataset. The membership
of an individual in a dataset means that the corresponding individual is included in the dataset.

– The adversary knows the dependencies (e.g., kinship coefficient) between the individuals in the dataset.
As discussed, the adversary can obtain this information from side-channel leaks or by estimating the
kinship coefficients between the dataset participants using the responses to its queries.

4 Proposed Work

Let dataset D includes N individuals andm SNPs. We assume a statistical query to the dataset is computed
over q dataset participants, including a target i and other p dataset participants (q = 1+p). Dj

i represents
the value of SNP j for target individual i and Dj

p represents the sum of the SNP j values for other (p)
participants that are involved in the query computation. We let (δ) be the added Laplace noise with scale
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2/ϵ. Set F (|F| = f) includes individuals from the same family (i.e., target i and his/her family members),
and set U (|U| = u) includes the other unrelated members (non-relatives) in the dataset. Note that there
may be more than one family in the dataset and the privacy risk for each family can be shown similarly.
Therefore, for the sake of simplicity, we assume the dataset includes only one family. We show the overview
of the proposed algorithm in Figure 1. We provide all the notations we use in Table 1 in Section 2 in the
Supplementary Materials.

Similarly to the previous work [11], we assume family members share their data in a sequential order
during the data collection process. For each new incoming family member to the dataset, we hide some
selected SNPs to decrease kinship coefficients among family members and preserve their familial privacy.
The main differences between this work are:

– The original selective sharing scheme in [11] considers a publicly available dataset and it aims to reduce
the kinship coefficients between the dataset participants to hide the familial relationships. Here, the
statistical dataset is not public. Therefore, our aim is not to specifically hide the relation of participants.
Instead, our goal is to reduce the kinship coefficients so that (1) privacy vulnerability (caused by the
sharing of statistics computed over dependent tuples) is minimized, and (2) the utility of the shared
statistics still remains high. As a result, we exclude the outlier constraints part (details provided in the
Supplementary Materials, Section 1.1) in the optimization model. We focus on satisfying the kinship
constraints only. For completeness, below we describe the part of the formulation and the approach
that we propose in [11] and we also use here.

– We design the proposed method to hide overlapping regions among the family members first and solve
the optimization later. The goal is to have better privacy and higher utility.

Dataset Owner

Adversary

Queries

Responses
Responses

!"#$%: (() + (*) 

+(() + (*)

LPM 
PerturbationSelective 

Data Hiding

Background Knowledge
Familial Relationship
Membership Information

!"#$%,-./, 01 , p-value

Targeted Attack
Goal: infer the genomic record of the target 2

Static Genomic Dataset D

The genomic record of the target 2 is protected

Fig. 1: Our proposed model. (1) The dataset owner selectively hides SNPs from the family members included in
the dataset during data collection. We consider a static genomic dataset, which is a one-time updated dataset.
(2) The adversary sends the count queries to the dataset owner. (3) The dataset owner applies LPM to the query
results and sends them to the adversary. (4) The adversary runs the attribute inference attack against the target
i by using i) results of differentially-private count queries, ii) dependency between the target and target’s family
members that are in the dataset D, and iii) Mendel’s law. In our threat settings, the adversary can obtain: i) the
membership information of all dataset participants, and ii) the kinship coefficient between the dataset participants,
from exploiting side-channel leaks.

To reduce the kinship coefficient, we hide positions based on their SNP configurations. Hence, we use
a notation to denote the positions with different SNP configurations for 1) an individual, and 2) a family.
For an individual i, a particular genomic position can hold a SNP configuration si, where si takes values
in {0, 1, 2}. We denote the total number of positions the individual owns with SNP configuration si as nsi

(e.g., n0 is the number of positions with SNPs’ value of 0). nsi shows how many genomic locations are 1)
recessive homozygous, 2) heterozygous, and 3) dominant homozygous. For the setting of representing more
than one individual, we refer to all genomic positions (with their SNP configuration) for all individuals
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from the family members. For example, if we have a family of three members, n121 indicates the number
of positions in which the first individual’s SNP value is 1, the second’s is 2, and the third’s is 1. If an
individual i can hold any of the SNP values (i.e., si = 0, 1, or 2), we denote si with ∗.

To calculate the kinship coefficient between two individuals i and k, we use the robust kinship estimator
proposed by [20]:

ϕik = (2n11 − 4(n02 + n20)− n∗1 + n1∗)/4n1∗ (1)

when n1∗ ¡ n∗1, it means that kth individual has more heterozygous positions than the ith member. n11

presents the number of genomic positions where both individuals are heterozygous. n20 and n02 indicate
the number of SNPs when the individuals i and k hold homozygous dominant SNPs (e.g., si = 0) or
homozygous recessive SNPs (e.g., si = 2).

Our solutions find the appropriate positions to hide based on the SNP configuration. We define a
variable, xsi , to denote the number of a particular SNP configuration we need to hide from the most
recent entrants (i.e., last arrived family member). Using Equation 2, one can easily calculate x11; the
number of heterozygous genomic positions to be removed in order to decrease the kinship coefficient down
to a preset ϕ′ value between two individuals, as:

x11=
2n11−4(n02+n20)−n1∗+(1−4ϕ′

ik)n∗1

2(1−2ϕ′
ik)

(2)

To have a kinship coefficient lower than a preset Φ, Equation (2) can be cast as an integer programming
problem as follows:

min x11

subject to

2n11−4(n02+n20)−n1∗+(1−4Φ)n∗1≤(2−4Φ)x11

x11≤n11 (3)

min x101 + x111 + x121 + x110 + x112

s.t.

2n11∗−[4(n02∗+n20∗)]−n1∗∗+[(1−4Φ)n∗1∗]≤ [(2−4Φ)x11∗]−x101−x121

2n1∗1−[4(n2∗0+n0∗2)]−n1∗∗+[(1−4Φ)n∗∗1]≤ [(2−4Φ)x1∗1]−x110−x112

2n∗11−[4(n∗02+n∗20)]−n∗∗1+[(1−4Φ)n∗1∗]≤ [(1−4Φ)x11∗]+2x111−x1∗1

x11∗ = x111 + x110 + x112

x1∗1 = x111 + x101 + x121

x101, x111, x121, x110, x112 ∈ Z≥0. (4)

We show how to select the kinship coefficient threshold Φ in Section 7 in the Supplementary Materials.
Equation 4 shows the extended optimization model (in Equation 3) for a three members family.The ob-
jective function in the mixed integer programming model (shown in Equation 4) minimizes the number of
SNP positions we need to hide, subject to kinship constraints derived using the kinship formula in [20]. For
larger families with more than two members, the optimization model considers all the pairwise kinship co-
efficients among the related members. We use CPLEX (IBM Inc.) to solve the mixed-integer programming
problem [21]. In our model, the number of constraints increases exponentially with the augmentation of
family size, thus, becoming more difficult. We show an estimate of the time and memory requirements of
the optimization model considering the different number of i) family members and, 2) SNPs, in Section 8 in
the Supplementary Materials. The optimization model is run regularly when a new family member arrives
at the dataset. First, we consider the overlapping SNP positions among the family members in the dataset.
Once the number of positions and their configurations is determined by the optimization procedure, we
select these positions from the overlapping region among the first-degree relatives e.g., the overlapping
region between the mother-son and the father-son. If the number of required SNPs to hide is larger than
the number of SNPs in the overlapping region (i.e., not enough SNPs exist in the overlapping region), we
run the model to randomly remove the rest of the SNPs (i.e., outside the overlapping region) from the
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family members. Since the dataset is not public, we assume that the dataset owner knows the previously
removed SNPs from the former arrivals. If not, alternatively, after completing the data collection, the
dataset owner can 1) identify the families, and 2) process the genomes one by one to apply the selective
hiding process, before sharing any statistical query from the dataset.

Hiding the overlapping SNPs among the family members allows to (1) preserve higher utility guarantees:
it reduces the kinship estimation between multiple family members by hiding less number of SNPs, and
(2) preserve higher privacy guarantees: it hides multiple SNPs for an SNP position to confuse a potential
adversary trying to know sensitive information from the query results. Figure 2 shows how to hide from the
new SNP set by choosing the SNPs overlapped with the previously hidden set. Note that the adversary (who
sends statistical queries to the dataset) cannot observe the hidden SNPs as the dataset is not published.

Fig. 2: Comparison of our proposed approach and the one in [11]. The orange-colored SNPs denote the available
SNP positions that can be hidden. Green-colored areas are the removed regions. In the proposed approach, we aim
to hide from the region with maximal overlap.

In the following, we provide a toy example describing Figure 2 and how the proposed selective hiding
process work for the individuals in the Manual Corpas family tree (described in detail in Section 5.1 and
the family tree is shown in Figure 3).

1. Manual Corpas arrives at the dataset (or his genome is processed the first). No SNPs are hidden from
his genome.

2. When the father arrives (or the father’s genome is processed), we first calculate the number of required
SNPs to be hidden from the father using the optimization model with the aim of reducing the kinship
between the son and the father. Then, we find the available SNPs that we can hide from the father.

3. When the mother arrives, we also calculate the number of required SNPs to be hidden using the
optimization model. We locate the available SNPs to be hidden from the mother in order to decrease
the kinship coefficient between the son and the mother.

4. We determine the SNPs that lie in the overlapping region between the available SNPs that can be
hidden from the father and the available SNPs that can be hidden from the mother since these SNPs
are proven to contribute the most to the kinship coefficient between the son, father, and mother.

5. We start hiding from the father. We pick the required SNPs from the overlapping region, and the rest
of the SNPs are selected randomly.

6. Then, we hide the mother’s SNPs that lie in the overlapping region. After removing these SNPs, the
mother and the son’s kinship coefficient is then decreased by one familial degree compared to their
original value. No need to hide extra SNPs from the mother. (This step shows how the heuristic
approach minimizes the random selection).
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7. If the aunt arrives later, we run the optimization model for four people in such a way that kinship
coefficients between both aunt-mother and aunt-son decrease while preserving the decreased kinship
coefficients as in the previous steps.

After repeating this selective hiding process for each dataset participant, sequentially, all (required)
records in the dataset become obfuscated and the dataset can now accept statistical queries. We consider
here the count query by the users (or the adversary). Following the attack scenario proposed by [9], to
limit the number of dataset members included in the query results, the adversary sends its query specified
by some demographic properties (e.g., age, address). Dataset owner computes the result of the query on the
dataset with missing SNPs (missing SNPs of some dataset participants are due to the proposed selective
hiding algorithm). Dataset owner reports (1) the query result (sum of all SNP values for the dataset
participants that are considered in the query computation), and (2) the number of dataset participants
that are used to compute the query results (q). Note that if a dataset participant is involved in the query
computation, but its corresponding SNP has been hidden (due to the proposed selective hiding algorithm),
that participant still contributes to the number of dataset participants q, which are used to compute the
query result (i.e., from the adversary’s point of view, the query is still computed over q individuals). In a

response to a count query for an SNP j, the dataset owner computes a noisy query result D̃j
pi, by adding

Laplace noise with parameter 2/ϵ. The query result includes the sum of the SNP j values for a target
i (Dj

i ) and other p participants included in the query results (Dj
p). We assume that the adversary has

access to 1) auxiliary information about the membership of each participant including the target i, and 2)
familial relationship R between the target and other individuals in the dataset (that is computed over the
obfuscated dataset with the hidden SNPs and released as metadata by the dataset owner). After receiving

the noisy query result D̃j
pi, the adversary can use the coin change algorithm [22] to obtain all possible

partitions of total count (for SNP values) as a combination of the set {0, 1, 2}, where each partition
should only include ≤ (p + 1) individuals. Next, for each valid partition, the adversary validates all the
unique permutations using Mendel’s law. Once validated, the adversary computes the probability of each
permutation from Mendel’s law by considering potential values of SNP j (0, 1, and 2) for the target i.
Hence, the adversary can infer the value of Dj

i for target i using the SNP values of dependent people
related to the target that is used to compute the query result, as shown in [9]. We show an example of how
to perform an attribute inference attack using the count query results in Section 4 in the Supplementary
Materials. To evaluate the privacy and utility performance of our proposed selective hiding algorithm, we
use the correctness and utility loss metrics (explained in detail in Section 5.3) over a real-world genomic
dataset to show the robustness of our mechanism. We next discuss our evaluation in detail.

5 Evaluation

5.1 Dataset Description

For the evaluation, our dataset D contains partial DNA sequences from two sources:

– 1000 Genomes phase 3 data [23]
– Manuel Corpas Family Pedigree [24]

1000 Genomes Phase 3 data We use data from 1000 Genomes Phase 3 [23], to obtain data for the
unrelated individuals from the same or different population of the target and his family members. We
extract the genotypes from chromosome 22 for 176 participants from the European population using the
Beagle genetic analysis package [25] to convert the values of genotypes to 0, 1, or 2 according to the number
of minor alleles for each SNP.

Manuel Corpas (MC) Family Pedigree Manuel Corpas [24] released his and his family members’
genomes for research purposes. The dataset contains the DNA sequences in variant call format (VCF) for
the father, mother, son (Manuel Corpas), daughter, and aunt. The family tree of the individuals in this
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dataset is illustrated in Figure 3. We choose the son to be the target and we use the genomic records of
his first and second-degree family members (father, mother, and aunt).

We extract the common SNPs from all MC family members and 1000 Genomes members for the
evaluation of the proposed algorithm. Finally, we combine the family genomic data with the unrelated
individuals.

5.2 Evaluation Settings

To evaluate the proposed countermeasure against the attribute inference attack, we defined a case-control
dataset D. D includes N individuals (N= 180) from the European population from the 1000 Genomes
project dataset and MC family, in which (N2 = 90) are cases and (N2 = 90) controls. As discussed in
Section 3, the adversary aims to infer m SNPs for a target i using the results of queries over dataset
D. Here, we assume that the adversary knows 1) the true number of participated individuals (i.e., true
number of SNPs) in the query result, and 2) the kinship coefficients of the dataset participants (e.g., from
the metadata of the dataset). Note that kinship coefficients shared by the dataset are computed after the
proposed selective sharing algorithm (reflecting the actual kinship coefficients in the final dataset), and
hence they are obfuscated to provide robustness.

5.3 Evaluation Metrics

To evaluate the performance of the proposed algorithm against attribute inference attacks, we use the
correctness metric. Utilizing the notion of the expected estimation error , the correctness of the adversary
quantifies the difference distance (Dist) between 1) Dj

i , which is the true value of SNP j for the target

individual i, and 2)
˜
Dj

i , which is the inferred value of SNP j for the target individual i by the adversary.

We can compute the probabilities for Dj
i using the Mendelian inheritance probabilities for an SNP i given

all the potential SNP values (i.e., 0, 1, or 2) for Dj
i . We compute the correctness for all m targeted SNPs

of the target i as follows:

C = 1−
m∑
j=1

P
(
Dj

i | ˜
Dj

pi

) ∣∣∣Dist
(
Dj

i ,
˜
Dj

i

)∣∣∣ , (5)

To quantify the utility loss (in terms of the quality or accuracy of the shared query responses) due to
the proposed mechanism, we calculate the average change in the actual query result Dj

pi and the noisy

query result
˜

Dj
pi considering all m targeted SNPs as follows:

U =
1

m

m∑
j=1

|Dist(Dj
pi,

˜
Dj

pi)|, (6)
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Fig. 3: Manuel Corpas family tree.

5.4 Experimental Results

In an inference attack, we assume the differentially private query results are computed by accounting for
(1) target i and multiple first and second-degree family members in F; and (2) target i, multiple family
members in F, and multiple other unrelated members (non-relatives) in U. We evaluate the performance
of the attack under two assumptions:

– Independent assumption (w/o dep): the adversary assumes that there is no correlation between the
participants in D.

– Dependent assumption (w/ dep): the adversary utilizes the familial relationships between the partici-
pants in D to perform the genome reconstruction for target i.

We also compare the proposed algorithm with the one proposed in [9], which aims to adjust the privacy
parameter of DP to provide privacy guarantees for the dependent tuples in the dataset. According to [9,
10], if all the tuples in the dataset are independent, then the noisy query output achieves DP with the
same privacy budget ϵ. However, if the dataset includes dependent tuples, one needs to augment the scale
of Laplace noise using a smaller ϵ value (or a larger query sensitivity) to achieve DP. Using the notion of
the ”leaked information” ratio for different privacy budgets ϵ, [9] adjust the global sensitivity of the query
to mitigate the information leaks resulting from the attribute inference attack. In the following, we (1)
compare the dependent (referred to as ”no hiding w/ dep” in the figure) and independent assumptions
(referred to as ”no hiding w/o dep” in the figure) to show the vulnerability due to independent assumption,
(2) show the performance of our proposed mitigation algorithm (by hiding selective SNPs from the family
members) against an adversary that uses the dependencies in its attack (referred to as ”selective hiding”
in the figure), (3) hide random SNPs (without using any optimization) from the family members rather
than selective hiding, to show the benefits of selective hiding (referred to as ”random hiding” in the figure),
and (4) compare the proposed mitigation algorithm with the one in [9] to assess the proposed algorithm
(referred to as ”dependent sensitivity” in the figure).

Privacy Performance In Figure 4, we evaluate the effect of different values of the privacy budget, ϵ,
on the adversary’s correctness in inferring the targeted m SNPs. We also analyze the robustness of our
proposed mechanism to the inference attack and compare it with the most similar existing work [9]. Here
the query results include the statistics from the family members only. We start including 1 first-degree
family member with the target i. First, we include the mother to the query results as in Figure 4(a), then
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Fig. 4: The effect of different values of the privacy budget, ϵ, on the adversary’s correctness in inferring the targeted
SNPs, considering a different number of family members in F (|F|= f) included in the noisy results of count query.
The query results include (a) MT: mother and target, (b) FT: father and target, (c) FMT: father, mother, and
target (d) FMTA: father, mother, target, and aunt.

we include the father of the target as in Figure 4(b)). Third, we include both the father and the mother
in the query results, as in Figure 4(c). Last, we consider a second-degree family member (aunt of target i)
in the query results along with the father and the mother of the target (Figure 4(d)).

Using the results of count queries over the case-control dataset D, we make the following key obser-
vations: (1) The correctness of the adversary with the knowledge of the data dependency is up to 50%
more compared to the case in which the adversary does not consider the data dependency in the query
results (Figure 4). (2) In accordance with the results of [10], the most accurate inference of the adversary
is achieved when the query computation includes target i along with his father and mother (Figure 4(c)).
Including a second-degree family member as in (Figure 4(d)) can enlarge the range of possible SNP values
for the target, and hence make it more difficult to accurately infer the correct SNP value with a high
probability. (3) Proposed selective hiding mechanism achieves better privacy for various privacy budgets,
compared to the random hiding for different family members included in the query results, as illustrated
in Figure 4.

Figure 5 shows the effect of different values of ϵ on adversary’s success in terms of its correctness in
inferring m SNPs of the target i. We increase the number of non-relatives (from 5 to 20) that are included
in the query computation along with first-degree family members of the victim. From these experimental
results, we make the following observations:

(1) In accordance with our previous observations in Figure 4, the probability of inferring the true value
of the targeted m SNPs slightly increases (mostly 2%-20%) depending on the knowledge of the adversary
about the dependency between tuples, as the value of the privacy budget, ϵ, increases from 0.1 to 5. Hence,
even when including a different number of non-relatives in the query results (e.g., the size of U changes
from 5 to 20), there is a significant increase in the correctness of the adversary if the adversary has the
knowledge of the data dependency, as shown Figure 5. However, in Figure 5, we observe that the difference
between the correctness of the inferred SNPs with and without the knowledge of the data dependency
is about 3 times less than when the query results include data for only family members of the target i
(Figure 4).

(2) Applying our proposed countermeasure by selectively hiding the family members’ SNP values is
superior to the dependent sensitivity mechanism in terms of correctness metric. Compared to the optimal
DP privacy guarantees, in which we consider all the tuples to be independent ((No hiding w/o dep) in
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Fig. 5: The effect of different values of the privacy budget, ϵ, on the adversary’s correctness in inferring the targeted
SNPs, considering 2 first-degree relatives (father and mother) with different numbers of non-relatives in U (|U|= u)
included in the noisy results of count query. The query results include 5, 10, and 20 unrelated members in (a),(b),
and (c) respectively.

Figure 5), our proposed mechanism achieves (∼5%) less privacy, while dependent sensitivity mechanism
achieves (∼15%) less privacy guarantees under the same privacy budget, ϵ.

(3) Randomly hiding the SNPs of the family members results in achieving less privacy guarantees, even
if we compare it with the correctness results of the attribute inference attack, where no hiding method is
applied (e.g., no hiding w/ dep in (Figure 5(a) and (b) for privacy budget, ϵ > 2.5).

Fig. 6: The effect of different values of the privacy budget, ϵ, on the adversary’s correctness in inferring the targeted
SNPs, using a different number of family members in F (|F|= f) included in the noisy results of count query.

Next, Figure 6 shows the effect of different values of the privacy budget, ϵ, used in DP, on the correctness
of the adversary, when we apply the selective hiding mechanism for family SNPs, considering a different
number of family members to be included in the query results. The results illustrate the association between
the privacy budget, ϵ, and the correctness of the adversary for inferring the actual values of the targeted
m SNPs. The probability of inferring the correct values increases significantly (by 30%) as the budget
privacy, ϵ, increases from 0.1 to 5, as shown in Figure 6. This is expected as the more ϵ values we use in
the LPM-based DP, the less the added noise, and hence increasing the success of the inference attack. The
choice of the parameter ϵ is difficult: values reported in the literature vary from as little as 0.01 to as much



Tuning Privacy-Utility Tradeoff in Genomic Studies 13

(a) (b)

Fig. 7: The relationship between different numbers of (a) family members in F (|F|= f and (b) non-relatives in
U (|U|= u) included in the noisy results of count query, and the adversary’s correctness in inferring the targeted
SNPs.

as 7 according to [26] or up to 100 according to [12], based on the required levels of privacy and utility for
the given use case.

Finally, we explore the robustness of the selective hiding mechanism for a different number of related and
unrelated people in the query results, without applying differential privacy. Figure 7 shows the relationship
between the number of family members (as in Figure 7(a)) or the number of non-relatives (as in Figure 7(b))
in the query results and the probability of inferring the true SNPs value by the adversary when we apply
selective hiding mechanism. The results show that increasing the number of family members or unrelated
individuals included in the query result, using selective hiding mechanism slightly decreases the correctness
of the adversary, thus improving privacy.

Utility Performance Publishing statistics of genomic datasets results in utility gain for society as a
whole. However, publishing these statistics could also result in privacy loss for the participants of the
dataset, especially if the dataset includes correlated tuples. Hence, the goal of our proposed mechanism
is to ensure that the privacy loss is restricted to an acceptable level, without causing a high loss in the
potential utility gain, when compared with the case of publishing the original statistical results. Using the
utility loss metric introduced in Section 5.3, in the following we compare our proposed mechanism (referred
to as ”selective hiding” in the figure) with the existing dependent sensitivity countermeasure proposed in [9]
(referred to as ”dependent sensitivity” in the figure) and random hiding mechanism (referred to as ”random
hiding” in the figure) in terms of utility, using a MAF query over a dataset D with m=100 SNPs. Figure 8
and Figure 9 show the utility loss caused by hiding selective SNPs from the family members participating in
the dataset D and then adding noise to achieve ϵ-DP by considering the dependence between tuples. As in
Section 5.4, we consider the query results to include the statistics from the family members only (Figure 8).
Then, we calculate the utility performance of the three mechanisms considering query results with different
numbers of unrelated individuals (Figure 9). The results show that with smaller ϵ values, utility loss caused
by the three mechanisms decreases. As previously discussed, the main idea of the dependent sensitivity
mechanism [9] is augmenting the Laplace noise by decreasing the privacy budget, ϵ, value to achieve DP
for any dataset with dependent tuples. Our proposed mechanism adds a significantly smaller amount of
noise, when ϵ ≤ 1, and hence provides better utility. For example, when ϵ = 0.5, and the query results
include 5 unrelated individuals along with the family members (Figure 9(a)), the amount of utility loss
caused by our mechanism is 33% of utility loss caused by the dependent sensitivity.

6 Conclusion

Developing new privacy-preserving techniques that facilitate sharing the outcomes of human genomic
studies is necessary. The main goal of such techniques is to preserve the privacy of dataset donors without
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mechanisms as countermeasures against the attribute inference attack, using a different number of family members
in F (|F|= f) included in the noisy results of MAF query.
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Fig. 9: The effect of different values of the privacy budget, ϵ, on the utility loss caused by applying different
mechanisms as countermeasures against the attribute inference attack, using a different number of non-relatives in
U (|U|= u) included in the noisy results of MAF query.

undermining the utility of the dataset, and hence the research outcomes. Differential privacy-based data
perturbation techniques have known privacy limitations while sharing statistics from a genomic dataset
that contains dependent tuples. In this paper, we propose a ”selective hiding” mechanism to mitigate the
privacy risks caused by the correlations between the dataset tuples. We assume a strong adversary who
can send one query about one SNP, then the dataset owner can choose the appropriate privacy budget ϵ
to release a noisy query result according to i) the required level of privacy and utility of the released data,
and ii) the sensitive nature of the genomic dataset. We evaluate our perturbation mechanism over real-
world genomic datasets and proved that it can achieve high privacy guarantees while minimizing utility
loss. Our results show that the proposed scheme achieves both significantly better privacy and utility than
the existing DP-based mechanisms. However, as a limitation of any DP scheme, it is known that sending
multiple queries per the same dataset may degrade the privacy guarantees of DP [27–30]. It may be possible
for us to consider this setting in our future research directions.
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1 Background

Here, we provide a brief background about our recent work on protecting kinship inference from public
genomic datasets (which is the basis of the proposed algorithm) and differential privacy.

1.1 Protecting kinship inference from public genomic datasets

In previous work, we define two routes that leak kinship information from publicly available datasets [1].
We show how the kin relationship between participants of anonymous genomic datasets can be efficiently
identified using (i) genotype similarity, and (ii) outlier allele pair counts. We show that the relatedness
of two individuals can be inferred based on their genotype similarity using a kinship metric. We observe
that such kinship metrics are mostly dominated by the number of SNPs that are heterozygous in both
individuals. Thus, before publicly sharing data, genomic positions wherein the two individuals are found
to be heterozygous can be hidden as it decreases the kinship coefficient between two family members
effectively. However, we also show that this alone will cause another privacy leakage as the number of
positions where the two family members are heterozygous will be too small. Simply comparing this number
to the population, one could infer that the two individuals are indeed in the same family. To mitigate these
risks, in our earlier work [1] we propose a technique to protect kinship privacy against these risks while
maximizing the utility of shared data. The method involves systematic identification of minimal portions
of genomic data to mask as new participants are added to the dataset. Choosing the proper positions to
hide is cast as an optimization problem in which the number of positions to mask is minimized subject to
privacy constraints that ensure the familial relationships are not revealed. The privacy constraints are the
privacy risks defined above. The former constraint pushes kinship values between family members to be
equal to a preset value after the removal of SNPs. The latter one ensures that the number of heterozygous
allele counts will not be too small hence, not become outliers in the dataset statistics.

1.2 Differential privacy

Under differential privacy, one’s inclusion within a the dataset should make no statistical difference in
an algorithm’s output. Therefore, two datasets that only differ by a single the record should produce
statistically similar results when running a private algorithm. DP provides formal guarantees that applying
a probabilistic mechanism A over two neighboring input datasets D and D’, which only differ by a single
tuple, should make no big statistical difference in the distribution of query results A(D) and A(D)’. The
degree of this difference can be controlled by privacy budget ϵ. More formally, DP can be defined as follows:

Definition 1. ϵ-Differential Privacy [2]
A randomized algorithm A achieves ϵ-differential privacy if for any pair of neighboring datasets D and

D’, and any O ⊆ Range (A),

Pr[A(D) ∈ O] ≤ eϵPr[A(D′) ∈ O]

LPM is one famous instance dealing with numerical data to achieve DP guarantees. It is based on
adding noise from a Laplace distribution proportional to the query’s global sensitivity (where the Laplace
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scale is equal to ∆Q/ϵ). Global sensitivity (∆Q) is the maximum possible change in the query outputs
between datasets D and D’ [3].

2 Notations

Notation Explanation
A A mechanism produces outputs with noise drawn from a suitable Laplace distribution
O The output under mechanism A
Range(A) The domain of the output under mechanism A, O ∈ Range(A)
Q The query function
ϵ Parameter expressing the privacy budget
∆Q The global sensitivity of the query
D The actual dataset
D′ Neighboring dataset
j A SNP in the set of SNPs, j ∈
N The number of individuals in D
m The number of SNPs in D
q The dataset participants included in a statistical query to the dataset
i A participant in D
k A participant in D
p Participants in D
R Familial relationship between the target and other individuals in the dataset
Dj

i The true value of SNP j for target individual i

D̃j
i The inferred value of SNP j for the target individual i by the adversary

Dj
p The sum of the SNP j values for (p) participants that are involved in the query computation

Dj
pi The sum of the SNP j values for (p) and (i) participants that are involved in the query computation

D̃j
pi The noisy query result

δ be the added Laplace noise with scale 2/ϵ
F (|F| = f) includes individuals from the same family (i.e., target i and his/her family members)
U (|U| = u) includes the other unrelated members (non-relatives) in the dataset

Dist The difference distance between Dj
i and D̃j

i

C The correctness of the adversary
U The utility loss in terms of the quality or accuracy of the shared query responses
si A SNP configuration that a particular genomic position can hold, where si takes values in {0,1,2}
nsi The total number of positions the individual owns with SNP configuration si (e.g., n0 is the number of

positions with SNPs’ value of 0)
n121 The number of positions in which the first individual’s SNP value is 1, the second’s is 2, and the third’s is

1. If an individual i can hold any of the SNP values (i.e., si = 0, 1, or 2), we denote si with ∗
ϕik kinship coefficient between two individuals i and k
xsi The number of a particular SNP configuration we need to hide from the most recent entrants
MT Mother and target
FT Father and target
FMT Father, mother, and target
FMTA Father, mother, target, and aunt

Table 1: Table of notations

3 Proof for DP Theorem

Theorem 1. Let A be a randomized algorithm. Then, for a genomic dataset D, A(D) provides ϵ-differential
privacy for a query Q with global sensitivity ς, if A(T ) = Q(T ) + LAP (∆Q/ϵ).

Proof. Given a query function Q over a dataset D. ∆ Q evaluates the sensitivity of the query function
Q for a dataset D. Hence, we can prove that applying the Laplace mechanism with scale ∆Q/ϵ for two
neighboring datasets provides ϵ-differential privacy as:
Pr(Q(T )+Lap(∆Q/ϵ)=O)
Pr(Q(T ′)+Lap(∆Q/ϵ)=O) ≤ eϵ
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Pr(Q(T )+Lap(∆Q/ϵ)=O)
Pr(Q(T ′)+Lap(∆Q/ϵ)=O)

=
exp−(

|O−Q(T )|ϵ
∆Q )

exp−(
|O−Q(T ′)|ϵ

∆Q )

= exp( ϵ
∆Q (|O −Q(T ′)| − |O −Q(T )|))

≤ exp( ϵ
∆Q (|Q(T )−Q(T ′)|)

≤ eϵ

4 Performing Attribute Inference Attacks

In figure 1, we show an example of how to perform an attribute inference attack using the count query
results, as described in [4].

– First, the adversary generates its queries that include the members of the same family (e.g., by forming
a query based on age – location - street level – city level – state level, etc).

– Second, the adversary receives the differentially-private sum (D̃j
pi = 6). The query result includes the

sum of the SNP j values for a target i (Dj
i ) and other p participants included in the query results

(Dj
p).

– Third, the adversary applies coin change, in which the adversary obtains all the possible partitions of

(D̃j
pi) (each partition will include (p+1 = 4) individuals).

– Last, the adversary uses Mendel’s law to find the valid permutations for each partition. Then, he
computes the probability by considering potential values of SNP i (0, 1, 2) for target j (son).

Fig. 1: An example explaining how to infer the target’s genomic record using the noisy sum query result, according
to [4].

5 Kinship Coefficient Estimation

An adversary can estimate the kinship coefficients between the dataset participants using the responses
to its queries. We evaluate the kinship coefficient estimation, using the MC family dataset considering
three cases: 1) siblings 2) mother-son, and 3) father-son. The adversary sends m sum/MAF queries for
m SNPs, then the adversary can estimate the SNP values for both individuals by utilizing the query
results (following the same algorithm explained in Figure 1 in the Supplementary Materials). Finally,
the adversary calculates the kinship coefficient using the robust kinship estimator proposed by [5] and
estimates the relationship between these two individuals (e.g., parent-offspring relationship, full sibling
relationship, second-degree relationship). The results show that an adversary can estimate the relationship



4 Almadhoun Alserr et al.

to be a full sibling after sending 30 queries. It also shows that the adversary needs to send at least 50
queries to estimate the correct kin coefficient between father and son. For the mother-son case, sending
100+ queries are enough to estimate the correct kinship coefficient, hence the adversary needs to send
more queries to estimate the mother and son.

Relationship Degree Kinship Inference Criteria (lower and upper bounds) Inference Criteria in Decimals

Monozygotic twin ≥ 1/(2
3
2 ) ≥ 0.353

Full sibling 1/(2
5
2 ), 1/(2

3
2 ) (0.176, 0.35)

Full sibling 1/(2
5
2 ), 1/(2

3
2 ) (0.176, 0.35)

Second degree 1/(2
7
2 ), 1/(2

5
2 ) (0.0883, 0.176)

Third degree 1/(2
9
2 ), 1/(2

7
2 ) (0.0441, 0.0883)

Unrelated ≤ 1/(2
9
2 ) ≤ 0.0441

Table 2: The relationship degrees and the kinship inference criteria.

Family Relationship / ϕ Values 0.0441 (unrelated) 0.0882 (third degree threshold) 0.175 (second degree threshold)

Aunt-Mother Infeasible solution (Full sibling) Infeasible solution (Second degree) Second degree
Aunt-son Unrelated Unrelated Unrelated

Mother-son Unrelated Third degree Second degree
Father-son Unrelated Unrelated Second degree

Table 3: ϕ values and the resulted kinship degrees between the family members

6 Case Studies

Here, we provide case studies that illustrate how our mechanism could be used to enhance privacy in
key data-sharing workflows in biomedicine. To demonstrate the association tests (i.e., p-value), first, the
study of [6] investigated the susceptibility loci for visceral leishmaniasis using two datasets. One of these
datasets is the Brazilian family-based discovery dataset which comprised 1970 individuals (357 cases and
308 families) genotyped at 553,323 SNPs. Our mechanism enables the design of query-answering systems
that allows any researchers to determine more statistics about the datasets such as cohort discovery, p-
value, χ2 association tests, most significant SNPs, and variants lookup (all these queries are explained
in Section 1 in the main paper). By first selectively hiding some SNPs from the participated Brazilian
families, the dataset will be ready to share whether a p-value is significant in a database for the desired
inclusion criteria (e.g., female participants, a specific region in Brazil), while protecting the privacy of family
individuals. Note that, given the potentially specific nature of inclusion criteria (e.g., age, area, gender),
answering arbitrary and carefully designed queries without hiding the kinship for privacy protection could
leak sensitive genetic information about the family individuals.

Second, the Genetic Analysis Workshop (GAW) real dataset [7] comprised 959 Mexican-American
individuals from 20 families is used in several GWAS studies to investigate a) the association test statistics
and p-values [8], and b) linear mixed-model (LMM) approaches to account for population structure and
relatedness [9, 10]. However, restrictions apply to the availability of these data and their statistics, and only
qualified researchers may request these data directly from GAW [10]. Our mechanism enables hiding the
sensitive SNPs in GAW family-based datasets and then designing a privacy-preserving query-answering
systems that allow researchers like [9] to query the dataset while preserving the privacy of family-individuals
without granting full access to the GAW dataset. [9] goal is to compare the LMM approaches in order
to account for sample relatedness on the basis of GWAS information. To achieve this goal, [9] set out
to recruit study participants in the GAW genotype dataset who meet the following criteria: ”no lack of
genotype data, non-Chinese or Japanese ethnicity, SNPs without low-frequency (MAF ¿1%), SNPs with
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a missing rate less than 10%, and Hardy-Weinberg equilibrium testing pass”. Eventually, 954 individuals
and 427,952 SNPs in the GAW dataset met the inclusion criteria, while 5 individuals and 44097 SNPs
are excluded, and [9] were able to explore the performance of various LMM implementations. Following
our mechanism, researchers like [9] can determine the individuals and SNPs in the GAW database that
meet the desired inclusion criteria and can query the most significant SNPs in a privacy-preserving way to
explore the performance of various LMM implementations [9]. Moreover, following our mechanism allow
for partially sharing the dataset with qualified researchers in a privacy-preserving way. For example, [9]
removed the SNPs with low frequency to perform their analysis. Querying the dataset before sharing it
can protect the privacy of family individuals since SNPs with low frequency are considered rare. It is well-
known that the rare SNPs provide sensitive information about predispositions of individuals for complex
diseases [11].

Hence, our mechanism can be used in many other datasets that contain families such as 1) families
datasets that were collected by the International Multicenter ADHD Genetics (IMAGE) project [12] and,
2) the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study which is part of the National
Heart, Lung, and Blood Institute NHLBI Family Heart Study [13–16].

7 Kinship Coefficient Selection

In our optimization model, the Φ value is selected from the upper bound of the kinship interval values.
We start with the lowest possible pedigree level, where the optimization model has a feasible solution. We
choose the Φ kinship values from the inference of kinship estimator in Table 2. We first try the kinship value
from the upper bound of the ”unrelated” kinship degree where Φ1/(2

9
2 ). If there is no feasible solution we

consider the ”third degree” upper bound interval in our model, where Φ1/(2
7
2 ). In the case that there is no

feasible solution once more, we increment the pedigree level to ”second degree” relatives and try Φ1/(2
5
2 ).

In the following, we show the results for evaluating different ϕ values in our model. We consider the
son, father, mother, and aunt in the MC family (described in detail in the main paper in Section 5.1.2).
We aim at making everyone in this set of quartets have a maximum ϕ value as their kinships. We show
the kinship degrees after evaluating three ϕ values (i.e., ϕ = 0.0441, 0.0882, and 0.175) in the optimization
model. The results are also shown in Table 3.

7.1 First Setting (ϕ = 0.0441)

Our aim here is to degrade the kinship degree between the family members to ”unrelated”. The optimization
model works when the son, father, and mother join the dataset. When the aunt joins, the model results in
an infeasible solution, hence we didn’t hide any SNPs from the aunt. We could degrade the kinship degrees
between the aunt-son, mother-son, and father-son pairs to ”unrelated”. The kinship degree between the
aunt-mother pair is revealed as full siblings, which is infeasible.

7.2 Second Setting (ϕ = 0.0882)

We aim at reducing the kinship degrees between the family members as ”third-degree” relatives. Similar
to the first setting above (ϕ = 0.0441), the optimization model work when we add the son, father, and
mother to the dataset. Adding the aunt leads to an infeasible solution and the Aunt-son kinship degree is
released as ”unrelated”. The mother-son and father-son pairs are released as ”third-degree” relatives. The
Aunt and mother kinship degree could be only decreased to the ”second degree”.

7.3 Third Setting ϕ = 0.175

When we set the ϕ value to 0.175, the kinship degrees between the family members are released as ”second
degree”, except for the aunt and son pair where the kinship degree is revealed as ”unrelated”.

After evaluating the three different ϕ values, we perform the DP algorithms for releasing the count
queries from the case-control dataset D. Figure 2 shows the effect of different values of the privacy budget
ϵ on the adversary’s success in terms of its correctness in inferring m SNPs of the target i. Here the query
results include the statistics from the family members only. We start including 1 first-degree family member
with the target i. First, we include the mother to the query results as in Figure 2(a), then we include the
father of the target as in Figure 2(b)). Third, we include both the father and the mother in the query
results, as in Figure 2(c). Last, we consider a second-degree family member (aunt of target i) in the query
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results along with the father and the mother of the target (Figure 2(d)). Using the results of count queries
we make the following key observations: (1) Increasing the ϕ value (e.g., ϕ = 0.175) leads to hiding less
SNPs values from all the family members. In our results here, using ϕ = 0.175 results in hiding 1 SNP
value from the aunt, and 16 SNPs value from both the father and mother.

(2) In accordance with the previous observation, increasing the ϕ value leads to increasing the correct-
ness of the adversary to infer the target’s SNPs values. The correctness of the adversary increased by up
to 15% when we increase the ϕ value from 0.044 to 0.175.

Fig. 2: The effect of different values of the privacy budget, ϵ, on the adversary’s correctness in inferring the targeted
SNPs, using a different number of family members in F (|F| = f) included in the noisy results of count query. Here
we use the genomic dataset resulting from choosing three different ϕ values in the kinship estimator.

Fig. 3: The memory and time requirements for evaluating our hiding algorithm over a different number of SNPs
considering two family members.
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8 Time and Memory Requirements

In order to find the time and memory requirements for our hiding algorithms, we evaluate our algorithm
using two real-world genomic datasets, namely:

– MC Family Pedigree( [17]) with 4 family members,

– xx family with x family members.

We consider a different number of variants (SNPs) and family members. First, in Figure 3, we show
the estimated memory and time requirements for evaluating our hiding algorithm with 2 family members
considering 1K and 8K SNPs. Our results demonstrate that we that we need 1 Megabyte (MB) and 1.3
milliseconds (ms) to hide 2 family members’ SNPs from 8K SNPs. Hence, using a linear equation (shown
in Figure 3) to estimate the time and memory requirements for a large number of SNPs, we estimate that
1 million SNPs need ∼100MB and ∼200ms.

Second, in Figure 4, we evaluate our algorithm for 4 family members considering 1K and 8K SNPs.
Our results show that we need 35MB and 303ms to hide 4 family members’ SNPs from 8K SNPs. Hence,
using a linear equation (shown in Figure 4) to estimate the time and memory requirements for a large
number of SNPs, we estimate that 1 million SNPs need ¡4.4 Gigabyte (GB) and ¡16.7 seconds.

Next, we evaluate the memory and time requirements for 2, 3, and 4 family members as shown in
Figure 5. Based on these results we estimate a linear equation to find the time and memory requirements
for a large number of family members. We estimate that need ∼252MB and ∼2215ms (2.2 seconds) to hide
SNPs from ∼8K SNPs for 17 family members. Furthermore, hiding SNPs from ∼8K SNPs for 100 family
members requires ∼1666MB (1.7GB) and 14749ms (14.7 seconds).

Therefore, assuming the main memory (DRAM) with 16GB, and given that 1 million SNPs require
<0.1GB up to 4.4GB, we estimate that we can run our algorithm for 3 to ∼120 million SNPs. We are
assuming a linear relationship to calculate the performance of our algorithm, which may not hold in reality.

Fig. 4: The memory and time requirements for evaluating our hiding algorithm over a different number of SNPs
considering four family members.
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Fig. 5: The memory and time requirements for evaluating our hiding algorithm over (a)(c) 8K SNPs and (b)(d) 1K
SNPs, respectively, considering different numbers of family members.
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