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Abstract

With the reduction of sequencing costs and the pervasiveness of computing devices, genomic data collection is contin-
ually growing. However, data collection is highly fragmented and the data is still siloed across different repositories.
Analyzing all of this data would be transformative for genomics research. However, the data is sensitive, and therefore
cannot be easily centralized. Furthermore, there may be correlations in the data, which if not detected, can impact the
analysis. In this paper, we take the first step towards identifying correlated records across multiple data repositories
in a privacy-preserving manner. The proposed framework, based on random shuffling, synthetic record generation,
and local differential privacy, allows a trade-off of accuracy and computational efficiency. An extensive evaluation on
real genomic data from the OpenSNP dataset shows that the proposed solution is efficient and effective.

Introduction
In genomic research, collaboration between multiple researchers often produces more accurate outcomes and pow-
erful statistics. On the other hand, the use of genomic data in collaborative studies has serious privacy implications,
as it includes information about an individual’s phenotype, ethnicity, family memberships, and disease conditions,
which might be highly sensitive to the study participants. Existing techniques to overcome such privacy concerns in
collaborative studies include (i) meta-analysis, which allows collaborators to only exchange statistics with each other
to obtain global (more reliable) statistics; (ii) cryptographic solutions, which allow collaborators to conduct statistical
analyses over (encrypted) federated datasets; (iii) and differential privacy (DP)-based solutions, in which collaborators
can exchange statistics or research datasets between each other under certain privacy guarantees.

One overlooked step in privacy-preserving collaborative studies is the identification of records (samples) that should
be included and/or filtered for the collaborative study. Such a step is crucial to make sure that the collaborative research
results are obtained using high quality data (e.g., after certain bias is removed or after focused groups are identified).
This step may include (i) identifying related samples and filtering them (as a part of the quality control process) in
genome-wide association studies (GWAS); (ii) identifying related samples (family members) across different datasets
to conduct studies that only involve family members, such as family-based GWAS; and (iii) identifying similar patients
(e.g., who carry a set of rare variants) to study a particular disease or mutation. Existing privacy-preserving solutions
for genomic data processing (e.g., cryptographic solutions or DP-based solutions) are not feasible to achieve this
because (i) cryptographic solutions are not efficient for large scale analyses (identification of samples to be included
or removed from a collaborative study involves analyzing the pairwise relationships between all the records in the
combined dataset), and (ii) DP-based solutions are based on obfuscating the shared data, and such obfuscation typically
leads to high inaccuracies in identifying the records to be included or removed from the collaborative study.

As a first step to tackle this crucial challenge, we propose efficient privacy-preserving techniques to identify correlated
samples across distributed genomic datasets. Among several potential record correlations, in this work, we mainly
focus on identifying kinship relationships since the existence of close family members in GWAS greatly impacts
the collaborative study outcome. Concurrently, sample relatedness is one of the main steps in quality control (QC),
which is widely used to clean the genomic data before performing any type of genomic study such as GWAS. Locally
identifying and eliminating related samples at each researcher’s dataset is not sufficient because two or more datasets
that include no kinship relationships in isolation, might include such relationships in the combined dataset due to cross
correlations across them. On the other hand, analyzing the combined dataset to identify such relationships should not
violate the privacy of research participants.

We consider a client-server environment, in which researchers, who want to conduct the collaborative study, share
metadata with a server so that the server can analyze and identify the kinship relationships across the samples in their



datasets, and hence identify which records to keep and which records to filter out in their collaborative study. We have
two main goals: (i) accurate identification of kinship coefficients across datasets and (ii) restricting the privacy risk to
below a baseline. To achieve (ii), we formulate the privacy risk (considering membership inference) and show that the
proposed scheme can keep this risk below a baseline that occurs due to sharing summary statistics (which is accepted
by many institutions, including the NIH [1]).

To simultaneously compute the kinship coefficients across samples from different datasets efficiently and provide
privacy, we propose a technique, in which researchers (collaborators) lightly synchronize to decide on a common set
of single nucleotide polymorphisms (SNPs) to be shared with the server and randomly shuffle the SNPs to be shared
so that the server cannot link the SNPs in the received datasets to their actual IDs (i.e., un-shuffle the SNPs in the
received datasets). To further improve the privacy (i.e., reduce the un-shuffling probability of the server), we also
explore addition of synthetic samples to researchers’ datasets and using a variant of local differential privacy (LDP)
before sharing the partial datasets with the server. Therefore, for the given privacy goal (e.g., keeping the privacy risk
below a baseline), the proposed scheme allows a trade-off between accuracy (for correct identification of the kinship
relationships) and computational efficiency. To analyze and quantify the privacy of the proposed scheme, we model an
efficient technique to un-shuffle the received datasets, showing the risk of un-shuffling at the server, and quantify the
risk for membership inference (by using the data that is obtained as a result of un-shuffling) via a power analysis. Our
results on a real-life genomic dataset show that the proposed scheme simultaneously achieves (i) high accuracy for the
identification of the kinship relationships (over 95% accuracy when more than 250 SNPs are provided), (ii) low un-
shuffling risk (less than 40% un-shuffling accuracy when more than 40% additional synthetic samples are added and
LDP variant is applied to the partial noisy dataset), and (iii) low membership inference risk (a membership inference
power less than 0.5 when the un-shuffling accuracy is 40% or less).

Related Work
Several privacy-preserving techniques have been developed to support genomic testing and genome-wide association
analysis. Frikken et al. [2] proposed methods for DNA string matching, Bruekers et al. [3] and Baldi et al. [4] de-
veloped methods for paternity tests. Ayday et al. [5] and Namazi et al. [6] provided methods for privacy-preserving
genetic susceptibility tests. Considering the nature of genome data, methods built on cryptographic techniques, such
as oblivious transfer and homomorphic encryption, are not scalable to large-scale genomic data. Several different
taxonomies of privacy-preserving GWAS methods have been proposed. Blatt et al. [7] developed a secure outsourced
GWAS schema based on homomorphic encryption. Cho et al. [8] proposed a secure GWAS protocol using multi-
party computation requiring no collusion among the parties. In [9, 10], differential privacy is utilized to alleviate the
computation bottleneck. However, these methods come with a significant reduction in utility.

Researchers have increasingly paid attention to privacy-preserving similar patients search, which is also relevant to
our work. In [11] Jah et al. proposed three secure protocols built on oblivious transfer for privacy-preserving edit
distance computation of genomic data. To alleviate the heavy computation cost of oblivious transfer, Wang et al. [12]
developed an algorithm to approximate the edit distance for the human genome by transforming the computation to
a private set difference size problem. However, the public reference genomic sequence required by their method can
affect the accuracy. Asharov et al. [13] developed an approximation function for edit distance by pre-processing the
whole genome sequences into fragments. Their protocol by using garbled circuits can return the exact k-closest records
in 98% of the queries. There is some work on outsourcing similar patient search. In [14], the data owner encrypts the
genome data and the generated index with a hierarchical index structure. Once received the outsourced data, the cloud
service provider can process the query efficiently using the proposed index merging mechanism based on bloom filter.

All aforementioned approaches to identify similar patients aim to identify similar genomic sequences to a given target
sequence. Assuming the size of the dataset to conduct the search is N , these methods typically require comparisons
between N samples, and they still have the aforementioned limitations. On the other hand, in our problem setting, there
is no target genome sequence; our proposed scheme aims to compare every pair of records across research datasets
(and hence it requires a comparison between N2 samples). Considering the scalability issues of the existing similar
patient search protocols, they cannot be utilized to solve the problem we consider (which has higher computational
requirements than the original similar patient search problem). Our proposed solution offers an alternative efficient,
privacy-preserving, and scalable solution for identification of record correlations across genomic datasets.



Background Information
In this section, we briefly introduce the metrics used for kinship inference and local differential privacy.

Kinship inference. To check for relatedness between individuals in genomic datasets, one can use any existing kinship
metrics, such as KING coefficient [15], Identity By Descent (IBS) allele estimation which is used in PLINK [16],
KIND [17], and Graphical Representation of Relationship errors (GRR) [18]. In this work, we use the KING kinship
coefficient [15] due to its simplicity and efficacy even when the number of SNPs per user is low. Nevertheless, any
other kinship metric can be applied to our proposed scheme. Formally, the KING kinship coefficient between two
individuals i and j is:

ϕij =
2n11 − 4(n02 + n20)− n∗1 + n1∗

4n1∗
, (1)

where n11 is the total number of SNPs in which both individuals i and j are heterozygous, n02 is the number of SNPs
in which individual i is homozygous dominant and individual j is homozygous recessive, n20 is the opposite of n02

where individual i is homozygous recessive and individual j is homozygous dominant, and n1∗ and n∗1 are the count
of SNPs in which individuals i and j are heterozygous, respectively. Based on KING, a kinship coefficient greater
than the threshold t0 = 0.35 implies duplicates or twins, less than 0.35 but greater than t1 = 0.175 implies parent-
offspring relationship or full sibling (first degree relationships), less than 0.175 but greater than t2 = 0.08 implies
second degree relatives, and so on [15]. In this work, we assume that SNPs are biallelic, and we set their values as 0,
1, and 2 representing the number of minor alleles they contain.

Local differential privacy (LDP). Differential privacy (DP) [19] aims to preserve a record’s privacy while publishing
statistical information about a database. DP provides formal guarantees that the distribution of query results changes
only slightly with the addition or removal of a single record in the database. DP guarantees that an algorithm behaves
approximately the same on two neighboring databases D1 and D2 (that differ by a single record) as Pr(K(D1) ∈
S) ≤ eϵ×Pr(K(D2) ∈ S), where K is a randomized algorithm and S is the output of the randomized algorithm (K).

One variant of DP, called local differential privacy (LDP) [20, 21], has been proposed to formalize privacy during
individual data sharing. LDP is satisfied when an untrusted data collector cannot determine the original value of a data
point from the reported (perturbed) value. Formally, for any two inputs x1 and x2 in the input space, and output y, an
algorithm K satisfies ϵ-LDP if Pr[K(x1) = y] ≤ exp(ϵ)× Pr[K(x2) = y]. (2)

ϵ-LDP can be achieved by the randomized response mechanism [22, 23, 24]. In this mechanism, each individual shares
his/her original value or an incorrect value based on probabilities determined by ϵ. If the input set contains d values,
each individual shares his/her value correctly with probability p = eϵ

eϵ+d−1 and shares each of the incorrect values
with probability q = 1

eϵ+d−1 to satisfy ϵ-LDP [24].

Direct application of the randomized response mechanism to achieve LDP significantly distorts the accuracy of the
kinship coefficients, since the randomized response mechanism independently flips the values of SNPs at each sample.
Therefore, in this work, we propose a variant of LDP (as will be discussed next) to preserve the kinship coefficients
between individuals across different research datasets while preserving their privacy.

System and Threat Models
In this section, we present the general system model along with the threat model.

System model. We consider a system that includes two parties (i) two or more researchers (collaborators) and (ii)
a server as shown in Figure 1 (details of the figure are discussed in the next section). The researchers are willing
to identify related samples across their federated dataset in a privacy-preserving way, and all the computations are
outsourced to the server. In the rest of this paper, we consider two researchers, but our methodology can be easily
extended to multiple researchers. To check for sample relatedness across datasets, each researcher provides some
metadata (generated from their local dataset, as will be discussed in detail in the next section) to the server. Then,
using the received metadata, the server identifies the related samples across all the datasets and sends the sample IDs
of the related individuals (samples) to each researcher. Based on the research study that the researchers are conducting,
they can decide whether to use the related or unrelated samples.

Threat model. We assume honest researchers with legitimate research datasets. We also assume an honest-but-curious
server that does the computations correctly, but on the other hand, it may try to infer sensitive information about



the participants in the research datasets using the metadata it receives. There exist known privacy attacks, such as
membership inference [25, 26], attribute inference [27, 28], and de-anonymization attacks [29, 30] that exploit research
results and/or partially provided datasets. In a membership inference attack, which is the most relevant attack for our
considered scenario, the attacker (the server in our case) aims to determine whether a target individual is part of the
dataset or not. In this work, the researchers’ goal is to ensure that the server does not learn any additional information
about the dataset participants besides what they can learn from the aggregate statistics about the dataset (release of
such summary statistics is accepted by many institutions, including the NIH [1]). In other words, researchers wants to
ensure that the privacy risk due to the shared metadata is lower than the risk due to sharing summary statistics.

Proposed Framework
Before getting into the details of the proposed framework, we provide the frequently used notations in Table 1.
Ri Researcher i U Common random seed
S Server Q Permutation vector generated from U
n Number of individuals in Di I Set of SNP IDs shared with server S
m Number of SNPs shared with the server (m = |I|) n′ Number of synthetic samples added to Di

Di The original dataset of Ri M i Metadata sent by Ri to the server S
ϵ privacy parameter xj

k State/value of SNP k for individual j
r Degree of relationship between two individuals (e.g., first) tr KING coefficient threshold for r-th degree

Table 1: Frequently used symbols.
To identify the kinship relationships between samples across different datasets, the proposed approach requires the
researchers to share a part of their datasets (i.e., metadata) with the server in a privacy-preserving way. Here, each
researcher has bi-fold goals: (i) metadata provided to the server should be useful to compute accurately the kinship
coefficients between samples across different datasets; and (ii) metadata should not increase the baseline privacy risk
that occurs due to sharing of aggregate statistics about the dataset. Let S denote the server, Di represent the original
dataset of researcher Ri, and M i the metadata that is sent to the server from each researcher. In the following, we
describe different steps of the proposed scheme (as also shown in Figure 1).

Synchronization between the researchers. The proposed scheme initially requires the researchers to coordinate and
decide on (i) the number of SNPs (m) and the set of SNP IDs I = {SNP1, SNP2, . . . , SNPm} they will share with
the server and (ii) a common seed U , as illustrated in Figure 1(A). Here, (i) is to make sure that the kinship coefficients
between samples across datasets will be computed using the same set of SNPs, and hence they will be accurate. m is a
system parameter to control the relationship between the accuracy of the computed kinship coefficient, computational
load at the server, and the privacy of dataset participants. On the other hand, (ii) is used by the researchers to shuffle
their shared datasets in the same way, so that the server cannot identify the actual IDs of the shared SNPs. Note that
the set of SNP IDs I should be selected in an optimal way such that the SNPs in I have close MAF values to each
other. This selection is to minimize the risk of un-shuffling at the server (we analyze this risk via evaluations).

Shuffling and synthetic sample addition at each researcher. Initially, each researcher generates a permutation vector
Q which is derived from the common seed U . Using the permutation vector Q, researchers shuffle the SNPs to be
shared (i.e., shuffle the columns of the partial dataset) as shown in Figure 1(B), so that the server receives these SNPs
in a mixed order (i.e., the server will not know the IDs of the shared SNPs). On the other hand, since the shuffling
is done using a common seed U (and hence a common permutation vector Q) across the researchers, accuracy of
kinship coefficients across the shuffled genomes remains intact. Therefore, the server, once it receives the shuffled
datasets (metadata M i) from the researchers, can accurately compute the kinship coefficient between all the pairs and
identify the close relatives. We will conduct a privacy analysis for this shuffling idea by considering (i) the un-shuffling
probability at the server and (ii) the risk of membership inference as a result of un-shuffling in the next section.

As will be discussed, the risk of un-shuffling at the server increases as the server knows more about the statistics
belonging to the original research dataset (Di) of a researcher.1 To improve the privacy of dataset participants (i.e.,
to decrease the probability of the server successfully un-shuffling the received datasets from the researchers), each
researcher Ri also adds n′ synthetic samples to their original dataset Di before sending the metadata (M i) to the server.

1Exact statistics about a research dataset (e.g., MAF values or correlations between the SNPs) can be shared publicly and sharing of such
information is acceptable by most institutions, including the NIH [1].



These synthetic samples are used to obfuscate the actual statistics in the original research dataset (e.g., MAF values)
and to distort the correlation between SNPs. Researchers know which samples are synthetic, and hence addition of
these synthetic samples does not decrease the accuracy of the process (i.e., if any kinship relationships between the
synthetic records are identified, it is eventually ignored by the researchers). Adding more synthetic samples reduces
the risk of un-shuffling at the server (as we will show experimentally), but high number of synthetic samples also
increases the bandwidth requirement and the computation load at the server.

D i

M i

I = {rs2626245, ..., rs6599770} 
m = 4

Identifies related individuals
across different datasets 

Server (S)M i

M j

User\SNP ID rs2626245 rs4984134 rs7170864 rs6599770 ...     rs7359214 

User1 0 1 0 1 0

User2 0 2 1 0 1

User3 1 0 0 0 0

User4 0 0 0 1 0

MAF 0.125 0.375 0.125 0.2 0.125

User\SNP ID rs7170864 rs6599770 rs4984134 rs2626245

User1 0 1 1 0

User2 0 0 2 0

User3 0 0 0 1

User4 0 1 0 1

SynUser1 1 2 0 0

MAF 0.2 0.4 0.3 0.1

B

A

C

Related Sample IDs

D i

R i R j

D j

R i

R j

Shuffling & Synthetic Sample Addition
I = {rs2626245, ..., rs6599770}; 

Q = {3, 4, 2, 1}; m = 4; n' = 1

Noise Addition (LDP Variant)
ϵ = 5

Researcher i Researcher j

Figure 1: An overview of the proposed scheme. In (A), researchers
coordinate to decide on the set of SNPs (I) that will be shared with the
server and a common seed which is used to generate the permutation vec-
tor Q. (B) shows the generation of the metadata M i from the original
dataset Di belonging to the researcher Ri. Initially, the researcher adds
n′ synthetic samples and later shuffles the SNPs (columns) based on the
permutation in vector Q (e.g., the values for the first SNP are moved to
the last column as shown by the cyan colored arrow). (B) also shows that
some SNP values/states change for some users due to addition of noise to
achieve the proposed LDP variant. The values in red denote the flipped
SNP values. In (C), each researcher Ri sends their prepared metadata M i

to the server, which computes the pairwise kinship coefficients among all
users and sends back to the researchers the related IDs.

LDP variant on the shuffled dataset by preserving the
kinship relationships. Adding synthetic samples de-
creases the un-shuffling (and hence, membership infer-
ence) risk, but as we will show, a high number of syn-
thetic samples is required to significantly avoid the un-
shuffling risk. As discussed, a high number of syn-
thetic samples increases the bandwidth requirement, and
it leads to additional (redundant) computations at the
server. To optimize the computation load at the server,
privacy risk, and accuracy of the computed kinship co-
efficients, we propose a hybrid approach that involves
shuffling, addition of synthetic samples, and application
of local differential privacy (LDP) for the shared SNPs
with the server.

As discussed, LDP-based techniques rely on flipping
the values of the shared SNPs based on a probability
q = 1

eϵ+d−1 , where d is the number of possible val-
ues/states that a SNP can take (d = 3 in our case) and
ϵ is the privacy parameter. Hence, privacy protection
that comes with LDP results in a significant reduction
of the accuracy of the kinship coefficients computed at
the server. To minimize the accuracy loss in the com-
putation of kinship coefficients between samples across
different datasets, we propose a variant of LDP.

In the standard ϵ-LDP, there exist a probability q for flip-
ping a 0 state (value) of a SNP to 2 and vice versa. Such
alterations would significantly degrade the utility (accu-
racy of the kinship coefficient computation). Let xj

k rep-
resent the state for SNP k of an individual j. In the pro-
posed LDP variant, each individual j shares their SNP
value xj

k correctly with a probability p = eϵ

eϵ+d−1 re-
gardless of its state. On the other hand,

• if xj
k = 0 or xj

k = 2, the state of SNP k is flipped
to 1 with probability q = 2

eϵ+d−1

• if xj
k = 1, the state of SNP k is flipped to 0 or 2

with probability q = 1
eϵ+d−1

By doing so, we avoid a 0 SNP value to be flipped to 2
and vice versa. Although this variant of LDP provides
weaker privacy guarantees compared to original LDP, it
helps to preserve the kinship relationships between the samples (although noise is added to the SNPs of each sample
completely independently). Besides, as we will also show via experiments, when combined with addition of synthetic
samples, the proposed LDP variant provides high robustness against membership inference attacks. Finally, each
researcher Ri sends the metadata M i, which consists of a partial noisy dataset, to the server.



Kinship calculation at the server and identification of close relatives. As illustrated in Figure 1(C), the server com-
putes the pairwise kinship coefficients between all users across different datasets by using the received metadata (M i)
from each researcher. Next, the server identifies all related individuals based on KING (kinship) coefficients and
thresholds tr (that helps to classify a given kinship coefficient to a particular degree of kinship, i.e., r) [15], where
r is the degree of relatedness (smaller degrees correspond to stronger relationships between samples). Note that as
the degree of relatedness increases (i.e., as r increases), the accuracy of correctly identifying the nature of kinship
between individuals decreases (which is a general drawback of kinship estimation using genomic data). Thus, for our
evaluations, we consider up to second degree relationships (r = 2) to evaluate the accuracy of the proposed scheme.
Finally, the server sends the list of all related individual IDs to the researchers.

Privacy Analysis
The privacy risk in the proposed approach is equivalent to the probability of the server un-shuffling the shared SNPs
in the metadata (M i) and inferring their actual IDs. This is because if the server can successfully infer the IDs of
the shared SNPs, then the dataset participants may be exposed to membership inference attacks (we also analyze the
membership inference risk after the un-shuffling at the server). In the following, we model the privacy risk due to
un-shuffling as dataset reconstruction and analyze it thoroughly.

To analyze the privacy risk, we assume that the server knows (i) the set of shared SNP IDs I ′ (to consider the worst case,
we assume I ′ = I , but in practice, I ′ may be larger than I if the server has some uncertainty about the set of shared
SNPs), (ii) the MAF values of the SNPs in I in the reference population, and (iii) pairwise correlations between the
SNPs in I based on public knowledge (i.e., a correlation table for each SNP pair representing the pairwise correlations
between different states/values of the SNPs). The server, using its aforementioned background information and the
metadata it receives from the researcher Ri, can generate a one-to-one match between the SNP IDs and the shuffled
SNPs in the shared partial dataset M i (i.e., un-shuffle the shared SNPs) by comparing the MAF values and also using
the additional correlation information between the SNPs.

The optimal way to do this matching is using the Hungarian algorithm [31] or a graph matching algorithm. For this,
we can form a graph GT = {V T , ET }, where the nodes (vertices) represent the SNPs of the metadata M i and the
edges represent the correlations between the SNPs (the distances of the correlation tables). Each node also contains
the MAF value of the SNP it represents. In the same way, we can form a graph GA = {V A, EA} for the SNPs in I
using the publicly available information. Then, we can compute the similarities between every possible pair of SNPs
in both graphs, considering the MAF values and their connections. Then, by applying the Hungarian algorithm (or a
graph matching algorithm), we can obtain a one-to-one match between the SNPs in M i and the ones in I . However,
assuming m SNPs in M i (and I), the running time of these methods is O(m3). Given their high complexity, in
this work, we use a greedy algorithm. In the following, we discuss how the server may un-shuffle the SNPs in M i

(metadata received from researcher Ri). The risk can be computed in the same way for other research datasets as well.

To determine the real IDs of the shared SNPs in M i, the server first computes the MAF values of each SNP in M i.
Then, the server computes the pairwise correlations between the SNPs in M i, i.e., it generates the correlation table for
each SNP pair in M i. The server matches the SNPs in M i with their IDs in I in an iterative way, as follows:

1. Compute the difference of the MAF values between all SNPs in M i and all SNPs in I .
2. Find the pair (e.g., (M i

j , Il) pair) with the minimum MAF difference (the one with the closest MAF values).

3. Assign the corresponding ID to the unknown SNP in M i (e.g., assign Il to the ID of SNP j in M i).
4. Pick randomly a SNP in I (e.g., Ib) and compute the distance of the correlation table of the pair (e.g., (Il, Ib))

with the correlation tables between the previously identified SNP ID (e.g., M i
j ) and all the other SNPs in M i.

5. Find the pairs in M i that have the minimum correlation distance to the pair (Il, Ib) (e.g., (M i
j , M i

a)).
(a) If multiple pairs have close correlation distances to the pair (Il, Ib), then find SNP with the closest MAF

value to Ib in the reference dataset (e.g., M i
a).

6. Assign the IDs of the corresponding SNPs (e.g., assign Ib to the ID of SNP a in M i).
7. Remove the SNPs whose IDs are assigned from I and M i (e.g., remove SNPs M i

j , M i
a from dataset M i, and

SNPs Il, Ib from I).
8. Go back to step (4) until there are no SNPs left in M i.



As a result, the server un-shuffles the received metadata, inferring the actual IDs of the SNPs. The un-shuffled dataset
M i′ is prone to membership inference attacks (as discussed in the threat model). To model and analyze the membership
inference risk, we assume that the server has access to a victim’s SNP profile, which can be obtained from a blood or
saliva sample (this is a common assumption to quantify the membership inference risk). To quantify the membership
inference risk due to the un-shuffled dataset, we use a power analysis based on the hamming distance [32].

Power analysis based on hamming distance. To determine the match (closeness) between the genome of the target
victim i to any of the individuals’ genomes in M i′ , we use the hamming distance (the minimum number of positions at
which the genome sequences are different). We follow the same approach as in our previous work [32] to quantify the
power analysis using the hamming distance. First, we use |A| individuals from a set A that are not in the dataset M i′ .
For each individual in A, we compute the hamming distance between the target i and all individuals in the un-shuffled
dataset M i′ and identify the minimum hamming distance. Then, we identify the “hamming distance threshold” γ as
the 5% false positive rate. Next, we use |B| individuals from a set B that are in the dataset M i′ . For each individual
in B, we compute the hamming distance between the target i and all individuals in the un-shuffled dataset M i′ and
identify the minimum hamming distance. Finally, we check what fraction of these |B| individuals have minimum
hamming distance that is lower than the threshold γ (i.e., correctly identified as in M i′ ). The privacy risk and the
accuracy of this approach mainly depend on the number of shared SNPs, the amount of noise added to the metadata to
achieve the proposed LDP variant (i.e., the privacy parameter, ϵ), and the un-shuffling accuracy of the server. Thus, as
shown in the next section, the researchers can fine-tune the privacy parameter of LDP and the number of shared SNPs
in the research dataset to simultaneously achieve privacy against membership inference attacks, high accuracy for the
computation of kinship coefficients, and low computational load at the server.

We compare the privacy risk of the proposed algorithm with the membership inference risk due to the sharing of the
aggregate statistics about the researcher’s dataset (e.g., MAF values). As discussed, sharing aggregate statistics is
acceptable by many institutions, such as the NIH [1], and hence we refer to this risk as the “baseline risk”. We use the
likelihood-ratio test (LRT) [33] to quantify it as follows:

Likelihood-ratio test. We assume that under the null hypothesis, the target i is not part of the researcher’s dataset Di,
and under the alternate hypothesis, the target i is part of Di. The overall log-likelihood ratio is computed as follows:
LRT =

∑l
j=1 xi,j log

aj

popj
+ (1− xi,j)log

1−aj

1−popj
, where xi,j is the SNP j of the individual i, aj is the MAF of SNP

j in Di, and popj is the MAF of SNP j in the reference population.

Evaluation
To evaluate the proposed scheme, we used real genomic data from OpenSNP dataset [34], which consists of 28,000
SNPs from 942 samples. Additionally, following Mendel’s law, we synthetically generated genome sequences for the
first and second degree relatives of the users in the OpenSNP dataset.

m Accuracy ϵ Recall
50 79% ϵ = 3 86%
250 95% ϵ = 4 94%
500 98% ϵ = 5 98%
1000 99% ϵ = ∞ 98%
2500 99%

Table 2: Kinship accuracy (for ϵ = 5) for varying
number of SNPs (m) and recall (for m = 500) for
varying ϵ values.

We use the accuracy metric to measure the correctness of kin-
ship identification using the KING coefficient [15]. We define
the “kinship accuracy” as the fraction of the correctly iden-
tified kinship relationships over the total number of pairwise
relationships. As discussed, here, we only focused on the cor-
rect identification of the first and the second degree relatives.
We use “un-shuffling accuracy” as the metric to measure the
server’s success in un-shuffling, which is computed as the frac-
tion of the correctly matched SNP IDs over the total number
of shared SNPs (m) in M i. Furthermore, for the membership
inference risk, we use power analysis based on hamming distance to measure the success of the server in identifying
whether a target is in the research dataset Di.

First, we explore the change in “kinship accuracy” with different number of SNPs (to compute the kinship coefficient)
and different privacy parameter ϵ (to achieve the proposed LDP variant). For this, we generated a dataset which
contains 100 unrelated individuals, along with 20 first degree and 10 second degree relatives of these individuals (the
dataset contains 130 individuals in total). Next, we added noise to dataset entries for varying ϵ values (ϵ = {3, 4, 5}),



and finally, we computed the kinship accuracy for different number of SNPs in M i (m = {50, 250, 500, 1000, 2500}).
The kinship accuracy for varying number of SNPs (m) when ϵ = 5 is shown in Table 2.
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Figure 2: The server’s accuracy in un-shuffling the
shared SNPs in the metadata M i (i.e., identification of the
real SNP IDs in M i) for different scenarios. The value in
parenthesis shows the fraction of added synthetic samples
with respect to the number of original samples.

In the same table, to show the effect of noise to achieve LDP, we also
show the recall for varying ϵ values when m = 500. For ϵ = 5, we
observed an accuracy more than 95% when the number of provided
SNPs (m) is more than 250. We also observed that regardless of the
value of ϵ the kinship accuracy is more than 99% when the number
of SNPs (m) to compute the kinship coefficient is more than 500.
The kinship accuracy decreases with decreasing m, as expected. We
observed a similar trend for precision when m decreases. In addi-
tion, for m = 500, we obtained recall values of 86%, 94%, and
98% for ϵ = 3, 4, and 5, respectively, which shows that addition of
more noise slightly degrades the utility of the shared data. For all
above cases, we observed a slight decrease in accuracy if the pro-
vided SNPs have close MAFs.

Next, we investigate the accuracy of the server in un-shuffling (i.e.,
identifying the real IDs of the SNPs in the shared metadata M i). We
observed that attack performance (un-shuffling accuracy) decreases
as m increases. Thus, for this experiment, we set the number of
provided SNPs in M i as m = 250. We also set the number of individuals in the dataset as n = 500. Since there
is randomness in the addition of noise to achieve the LDP variant, in the generation of the seed, and addition of the
synthetic samples, we conducted each experiment for 10 times and reported the average of the results. Note that (as we
also show in Figure 2) the server successfully un-shuffles the entire set of SNPs in M i when researchers do not add any
synthetic samples and noise to the shared metadata. This shows the requirement for the proposed countermeasures.
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Figure 3: Power of membership inference attack based
on hamming distance for different ϵ values considering var-
ious un-shuffling accuracy results.

Initially, we explored the effect of synthetic user addition (when
different number of synthetic users are added to M i) to the un-
shuffling accuracy when the researchers randomly pick the shared
SNPs (brown colored line in the figure). We observed a steady de-
crease in the un-shuffling accuracy as the number of added synthetic
samples increases. The un-shuffling accuracy drops below 50%
when more than 400 synthetic samples (which corresponds to 80%
of the original dataset) is added to M i. Then, we let the researchers
pick SNPs with close MAFs in M i (with an average distance of
0.00017, compared to 0.0329 for randomly picked SNPs) and as ex-
pected, we observe an additional decrease in the un-shuffling accu-
racy (green colored line in the figure). This is because, when the
MAF values of the SNPs in M i are close to each other, the proba-
bility of the server to incorrectly infer the ID of a SNP during un-
shuffling (using the proposed greedy algorithm) increases. Note that
picking SNPs with close MAFs, generally provides slightly lower utility for the shared data. We also observed that
when the size of I ′ (the set of shared SNP IDs that is known by the server) is larger than the size of I (the set of
shared SNP IDs in M i), the un-shuffling accuracy further decreases, as expected (red and cyan colored lines in the
figure). Next, we explored the effect of different values of the privacy parameter ϵ (i.e., when different amount of noise
is added to the entries in M i to achieve the proposed LDP variant). We observed that addition of noise significantly
decreases the un-shuffling accuracy (violet, orange, and blue colored lines in the figure).

Finally, we show the power of membership inference attack at the server for different ϵ and un-shuffling accuracy
values in Figure 3. We observed that when the server has an un-shuffling accuracy of at least 70%, the power of
membership inference is 1 for different ϵ values. However, as we show in Figure 2, such a high un-shuffling accuracy
is only possible when no synthetic samples or noise is added to the metadata. Note that the un-shuffling accuracy



on the x-axis in Figure 3, corresponds to a virtual horizontal line that can be drawn in Figure 2. Then, using any
of the alternatives that lies below that line would then be sufficient to achieve a power of membership inference that
is less than the corresponding one shown in the y-axis of Figure 3. For instance, to have the power of membership
inference less than 0.5, one should use one of the techniques that provide an un-shuffling accuracy of 40% or below
in Figure 2. In this case, all techniques that include selection of SNPs with close MAFs in M i and adding at least
300 synthetic samples (which corresponds to 60% of the original dataset size) would be sufficient (i.e., all lines except
for the brown colored one in Figure 2). As also shown in Table 2, almost all these techniques provide high kinship
accuracy, and hence utility. We also observed that for all un-shuffling accuracy values, the proposed scheme provides
higher privacy (i.e., smaller membership inference power) than the baseline risk, which occurs due to the sharing of
summary statistics about the dataset (e.g., MAF values).

Overall, given a fixed privacy goal (e.g., in terms of maximum membership inference risk), researchers need to op-
timize the accuracy of the kinship calculation and the computational load at the server (along with the bandwidth).
To do so, first, given the maximum membership inference risk, using the results of Figure 3, researchers decide the
maximum un-shuffling accuracy that can be tolerated. Next, using the results of Figure 2 and given the maximum un-
shuffling accuracy to be tolerated, researchers identify the potential techniques that can be used in terms of number of
synthetic samples to be added and the privacy parameter to achieve LDP. Finally, considering (i) the kinship accuracy
due to each potential technique (from the result of Table 2) and (ii) computational load and bandwidth (depending on
the number of synthetic samples), researchers decide on the technique and parameters to be used.
Conclusion
In this work, we have proposed an efficient and effective privacy-preserving technique to identify correlated samples
across distributed genomic datasets. Focusing on kinship relationships, we showed via experiments on real-life ge-
nomic data that the proposed scheme simultaneously provides high privacy guarantees for the research participants
and high accuracy for the identification of kinship relationships between individuals across different research datasets.
It also allows the researchers to customize system parameters to control the trade-off between the accuracy (for correct
identification of the kinship relationships) and computational efficiency (i.e., computational load at the server). The
proposed scheme will facilitate collaborative research results to be obtained using high quality data without violating
privacy of the research participants.
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