
3.847

Article

AI-Driven Validation of Digital
Agriculture Models

Eduardo Romero-Gainza and Christopher Stewart

Special Issue
Application of UAV and Sensing in Precision Agriculture

Edited by

Dr. Christopher C. Stewart and Dr. Huiping Tsai

https://doi.org/10.3390/s23031187

https://www.mdpi.com/journal/sensors
https://www.ncbi.nlm.nih.gov/pubmed/?term=1424-8220
https://www.mdpi.com/journal/sensors/stats
https://www.mdpi.com/journal/sensors/special_issues/uav_sensing
https://www.mdpi.com
https://doi.org/10.3390/s23031187


Citation: Romero-Gainza, E.; Stewart,

C. AI-Driven Validation of Digital

Agriculture Models. Sensors 2023, 23,

1187. https://doi.org/10.3390/

s23031187

Academic Editor: Felipe Jiménez

Received: 2 November 2022

Revised: 12 January 2023

Accepted: 16 January 2023

Published: 20 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

AI-Driven Validation of Digital Agriculture Models

Eduardo Romero-Gainza * and Christopher Stewart *

Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210, USA

* Correspondence: romerogainza.1@osu.edu (E.R.-G.); cstewart@cse.ohio-state.edu (C.S.)

Abstract: Digital agriculture employs artificial intelligence (AI) to transform data collected in the

field into actionable crop management. Effective digital agriculture models can detect problems

early, reducing costs significantly. However, ineffective models can be counterproductive. Farmers

often want to validate models by spot checking their fields before expending time and effort on

recommended actions. However, in large fields, farmers can spot check too few areas, leading them

to wrongly believe that ineffective models are effective. Model validation is especially difficult for

models that use neural networks, an AI technology that normally assesses crops health accurately but

makes inexplicable recommendations. We present a new approach that trains random forests, an AI

modeling approach whose recommendations are easier to explain, to mimic neural network models.

Then, using the random forest as an explainable white box, we can (1) gain knowledge about the

neural network, (2) assess how well a test set represents possible inputs in a given field, (3) determine

when and where a farmer should spot check their field for model validation, and (4) find input data

that improve the test set. We tested our approach with data used to assess soybean defoliation. Using

information from the four processes above, our approach can reduce spot checks by up to 94%.

Keywords: digital agriculture; decision tree; random forest; neural network; crop images; defoliation

1. Introduction

Digital agriculture is the fourth revolution of agriculture, wherein sensors, computa-
tion and artificial intelligence (AI) improve crop management, increasing yield. A common
objective in digital agriculture is the early detection of signs of pest infestations. Unmanned
Aerial Vehicles (UAVs) can fly over whole fields and capture images of crops [1–3]. Then,
digital agriculture machine learning models can infer crop health from captured images.
For example, state-of-the-art neural network [4] architectures can recognize defoliated
leaves, a sign of infestation, appearing in aerial images [5]. Neural network models are
increasingly common in digital agriculture because they can achieve greater classification
accuracy than competing machine learning (ML) models [5]. However, the process that
neural networks employ for classification involves complex, non-linear transformations
on a multitude of variables and require large amounts of data inputs [6]. It is difficult to
explain the behavior of neural network models, i.e., why the models label images the way
they do. Other ML models, such as decision trees [7], use salient features within an image
to make predictions. The behavior of these models is easier to explain. Decision trees can
also achieve high accuracy in some cases, particularly when using bagging and boosting
techniques to create ensemble models [8–11].

However, in digital agriculture, a finely tuned neural network still outperforms en-
semble models [5]. When neural networks underlie digital agriculture models, farmers
must trust the model without knowing how the model works. At best, farmers may see
that the model performed well on other fields (test datasets), but they have little assurance
that the model is working correctly on their field. This is particularly important when
considering that many models are vulnerable to under and over-fitting and to biases in
training and testing.

Sensors 2023, 23, 1187. https://doi.org/10.3390/s23031187 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23031187
https://doi.org/10.3390/s23031187
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1803-8176
https://doi.org/10.3390/s23031187
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23031187?type=check_update&version=1


Sensors 2023, 23, 1187 2 of 12

Ideally, farmers deciding to use a particular model in the field would be able to
evaluate both the model and the datasets used to provide performance metrics of the
model. Therefore, the farmer would want to:

1. Look at predictions made by the ML model and then go to the location of said
prediction and evaluate its accuracy. This requires an understanding of how many
images need to be observed to have a representative idea of model behavior, which in
turn requires an understanding of how well a set of images covers all possible inputs
in a field. Ideally, the images to be observed would be representative of the whole
field while being as few as possible.

2. Assess how representative a test set is of a whole field. This is particularly important
for identifying biases in a dataset. For instance, if all images on a field were taken
at a certain time of day, maybe the model can learn to focus on a specific side of the
image. A test set with the same bias would lead to high performance while the model
would be likely to under-perform in practice. Results using a test set in which all
features of the input are relevant are more likely to be representative of in-practice
performance. Thus, measuring feature coverage can be an indication of the quality
of a test set. Feature coverage also may be adjusted depending on the rigor needed
by the farmer. A farmer could consider unnecessary that all features of a dataset are
relevant and instead focus on the relevance of different regions of adjustable size. A
model providing this representation assessment should adapt to different levels of
quantization.

3. Add images to the test set, if necessary, so that the test set is more representative. This
requires quantification of how representative is a dataset and how much one input
contributes to the overall representation.

4. Evaluate the type of features of the input that make the model predict a certain
result. While a perfect understanding might not be possible, an approximation is
still useful for the farmer when making a decision. Using a separate interpretable
model that learns from the original might lead to some additional knowledge on the
original model.

We propose an approach that can achieve all four of these goals. Our approach starts
by training a random forest [12] on the output of the neural network, i.e., the labels of
the training set are the neural network prediction as opposed to ground truth. While this
approach does not guarantee the random forest will output the same predictions as the
neural network, it can provide hints on the neural network behavior. Then, we consider
how the random forest uses the features available to its trees. Here features correspond to
pixels or regions in the input images. We consider how many of the images of the test set
are needed until all the features are used at least once. Expectations on how many images
should be seen are given as lower and upper bounds by solutions of the coupon collector
problem [13].

This approach allows farmers to know how many images must be seen until the model
has considered all areas of all images, which gives an indication of how many images to see
in the field so that the predictions of the model are evaluated in different scenarios. Further,
understanding which images provide the most value can reduce the set of images to be
observed. Simultaneously, the number of images needed in the test set to see all features
indicates how well the test set represents all possible situations that could occur on the
field. A test set in which more images are needed than those expected given the solution of
the coupon collector problem probably is an unbalanced test set in which too many images
share the same features. Additionally, an understanding of feature coverage given a set
of images also provides information on what features are missing. Consequently, if a set
of features is not present in a dataset, this approach indicates what features need to be
present in additional images so that the feature coverage is complete. Finally, given a set
of images, a random forest can indicate which features are relevant for the inputs [14–16].
While this is not a perfect correlation with feature importance on a neural network, if the



Sensors 2023, 23, 1187 3 of 12

random forest approximates the neural network closely enough, the features used by the
forest might give insights on the behavior of the neural network.

We tested our approach using DefoNet [5] and a set of images taken by six UAV
missions conducted in August and September of 2020 in five soybean fields in Wooster,
Ohio, U.S. We ran DefoNet on the set of images and recorded its predictions. Then, we
trained a random forest using DefoNet predictions as the class labels. We observed that
our approach satisfied all goals described above while achieving a reduction of over 94% of
the set of images that provide a full feature coverage with respect to the amount of images
given by random selection.

2. Overview of System Proposed

Figure 1 gives an overview of our approach. First, images and expert generated labels
are used to train a neural network (DefoNet in this case). Then, the same set of images are
classified using DefoNet to produce another set of labels—the classifications of the neural
network. The output of the neural network might differ from the expert generated labels,
i.e., unless the neural network achieves 100% accuracy on the training set (which is typically
undesirable as it signals over-fitting), the model will err on some inputs. Nonetheless,
because the goal is for the random forest to learn the function of the neural network, the
forest is then trained using the output of the neural network as labels, instead of the true
labels. This produces a random forest trained to classify the output of the neural network.
If the forest is trained effectively the forest will approximate the outputs of the neural
network and the interpretation on forest classification could be indicative of what the
neural network may be doing.

f.c

f.a

f.b

yes no no yes

0 1

11 00

f.c

f.g

f.a

no yes no yes

0 1

11 00

random forest

Healthy

Defoliated

Healthy

Defoliated

Input images True Labels

DefoNet

Healthy Defoliated

Healthy

Healthy

Defoliated

DefoNet outputs

Figure 1. Overview of our approach. Images and the expert labels are used to train Defonet. Then,

the same images are given to DefoNet to generate new labels. A random forest is trained with those

images and DefoNet’s output.

By following this technique, the four goals described above can be achieved. An
interpretation of the neural network model can be obtained by running classification on
a random forest. While there is no guarantee that feature importance will be the same
in both models, the random forest can give a good indication of how the neural model
works. A reasoning for this claim is provided in Section 3.4. This approach also allows for a
method to quantify the coverage of a dataset, Section 3.5 discusses this method. The ability
to add images to a dataset and to find a minimal set of locations to spot check are direct
consequences of the method described in Section 3.5.

An added benefit of this approach is that the resulting random forest could potentially
be used as a stand-alone model and outperform a random forest trained on ground-truth
data. Decision trees are vulnerable to over-fitting due to noisy data. Since trees can split
the input space indefinitely, they might learn data divisions that do not correspond to
meaningful differences. While random forests are more robust, they still might under-
perform if input data are inconsistent. However, the output of neural networks, due to their
structure, must be a function in the strict mathematical sense, i.e., outputs of the neural



Sensors 2023, 23, 1187 4 of 12

network will be consistent. Thus, the training data that use the outputs of a neural network
would not contain any noise. A random forest trained from noiseless data could potentially
perform better on the test set predicting ground truth. However, this is a potentially
beneficial consequence of our design, but not a part of the original design. Thus, for online
predictions, we still rely on the neural network model and use the forest for the purposes
described above.

3. Materials and Methods

3.1. Dataset

The images used for our experiment are the same images as the training set for
DefoNet [5]. Figure 2 depicts some of the images of the dataset. The dataset consists of
97,235 images taken by six UAV missions conducted in August and September of 2020
in five soybean fields in Wooster, OH, USA. The images are all 108 × 108 pixels and are
labeled healthy or defoliated if they show more than 10% defoliation. All images were
expert-labeled. For training and testing the model, we separated all 97,235 images into a
training set (with 87,182 images) and a test set (with 10,213 images). Both sets preserved
the same proportion of positive (defoliated) and negative (healthy) samples.

Healthy plants Defoliated plants

Figure 2. Example of images in the dataset. Images on the left are labeled healthy, while those on the

right are labeled defoliated [5].

3.2. Neural Network Model

Neural networks [4] are popular ML models used for classification. They use one
or more layers of functions to produce a classification output. If a neural network with
multiple layers uses at least one convolution layer, then the network can be referred to
as a convolutional neural network (CNN) [17]. CNNs perform better in computer vision
tasks [17]. For our neural network, we used DefoNet [5] which is a fine-tuned CNN
designed to perform well on defoliation recognition. Figure 3 illustrates the architecture
of DefoNet. In Defonet, the inputs are images of 108 × 108 pixels. These inputs are then
passed through 8 convolutional layers all with 3 × 3 filters. Layers have varying number of
filters (from 32 to 128). After each convolutional layer, there is a ReLU activation function,
followed by normalization and pooling layers. Finally, there is a dropout layer before a
fully connected layer which gives the output.



Sensors 2023, 23, 1187 5 of 12

Input images

x8

Convolution

layer

ReLU

Activation
Normalization Max Pool Dropout Output

Figure 3. Architecture of DefoNet [5].

3.3. Random Forest Training

Decision trees [7] are ML models that classify inputs by repeatedly separating input
samples based on the values of certain features. Decision trees learn these splits by con-
sidering potential information gain splitting at each feature. While effective, this method
is vulnerable to over-fitting and to noise in the input data. A random forest [12] is an
ensemble of decision trees in which every tree has access to a different subset of samples
and features during training. Figure 4 illustrates an example of a random forest with four
decision trees. Features available to the trees are labeled f.a through f.g. Each tree uses
a different set of features although they share some commonalities. This example uses
binary classification (“yes” and “no”) although the structure can be generalized for more
classes, trees and features. During testing, each tree in the forest contributes a vote (the
classification of the tree) and results are aggregated to produce a classification for the forest.

f.c

f.a

f.b

yes no no yes

0 1

11 00

f.c

f.g

f.a

no yes no yes

0 1

11 00

random forest

f.e

f.d

f.b

yes no no yes

0 1

11 00

f.e

f.a

f.c

no yes no yes

0 1

11 00

Figure 4. Example of a random forest.

We trained a random forest using Python Scikit-learn [18]—the most widely used
framework for random forests—with 20 trees each with a maximum depth of 20. All other
parameters were the default parameters. To train the random forest, we used the dataset
described above but instead of the expert-generated labels, the labels given to the random



Sensors 2023, 23, 1187 6 of 12

forest were the outputs of DefoNet on the same set of images. The result is a random forest
classifier trained to predict the behavior of DefoNet.

3.4. Characterization of a Neural Model through Random Forests

Neural networks use a combination of linear and non-linear layers to produce a
classification [19,20]. This classification is a composite function on as many dimensions as
the input has features. On the other hand, decision trees split the input field using lines
perpendicular to the axis of each feature [21–23]. While this is a fundamental difference
in how models operate, so is the difference between Riemann sums and definite integrals.
Geometrically, both situations are analogous. Nonetheless, it is a well-known idea that
Riemann sums can calculate the value of definite integrals [24]. Similarly, with sufficient
input, a decision tree could exactly match the function produced by a neural network. Thus,
others have considered before the idea of extracting information from a neural network
into a decision tree [25–27]. However, in the case of Riemann sums, an infinite sum of
infinitesimal areas is required for the value to match exactly that of a definite integral.
Analogously, the amount of input needed to guarantee that the output of the decision
tree exactly matches that of the neural network might be prohibitively large. For this
reason, others have argued that the explanation of the neural model using a decision
tree is not necessarily faithful [28]. While increasing input samples might not be feasible,
increasing the number of trees can produce a better approximation as this also achieves
more splits over the input space. Thus, a random forest could give a closer approximation
of the function of a neural network. To be sure, random forests are harder to explain than
individual decision trees. However, they maintain enough interpretability to provide a
good idea on how the model works.

3.5. Quantification of Feature Coverage

ML models are vulnerable to learning particularities of their training set [29]. This is
particularly dangerous when many samples in the training set have features in common. If
the same features are relevant for classification in every sample of the training set, the model
can learn to focus on those relevant features and ignore others. This is not a problem when
other features are irrelevant in practice, however, if the ignored features are relevant in the
inputs after the model is deployed, this can lead to decreased performance. Particularly,
with images, models could learn to give higher importance to areas of the image that
are key for classification. For aerial field images, certain areas of the input could have
higher importance due to factors such as drone position, sun orientation, shadows, etc. For
example, in a field that is mostly healthy but with a small defoliated area, drone images
taken from similar positions would show the defoliated areas on the same side of the image,
causing the model to ignore other groups of pixels.

This manifests differently in different kinds of ML models. In neural networks, un-
derstanding whether a feature is used or not might not be possible. Saliency maps [30]
compute feature importance, but the outputs are real numbers. Low numbers could indi-
cate that a feature is not used, but this is not precise nor guaranteed. On the other hand,
random forests can directly and unequivocally output the features that are used to make
a prediction.

Figures 5 and 6 show two examples of the feature usage output by a random forest.
Figure 5 uses an 8 × 8 image instead of the 108 × 108 for clarity. In Figure 5, any time a
pixel is used in any node of any of the trees, the pixel is marked as used. Pixels in red are
marked as used. Figure 6 on the other hand, uses the same image as input, but here, the
output does not have the same level of detail. Perhaps a farmer is only concerned about
whether every region of the image is used for classification. In Figure 6, there are only four
regions and the output is which of the four regions are used. Since the random forest is
the same, the regions in Figure 6 correspond exactly with the location of the used pixels in
Figure 5. Thus, the bottom left region is not used because no pixel from that area was used
in the 8 × 8 image.



Sensors 2023, 23, 1187 7 of 12

f.c

f.a

f.b

yes no no yes

0 1

11 00

f.c

f.g

f.a

no yes no yes

0 1

11 00

random forest

Input images

Pixels used

Figure 5. Example of feature coverage when considering individual pixels on an 8 × 8 image. Pixels

in red are used for classification.

f.c

f.a

f.b

yes no no yes

0 1

11 00

f.c

f.g

f.a

no yes no yes

0 1

11 00

random forest

Input images Regions used

Figure 6. Example of feature coverage on the same input as Figure 5, but considering only whether

any pixel in any of the four regions is used.

Ideally, models would make use of every feature available to them if the input requires
it. In particular, in the case of an aerial image, every pixel has the same probability of
being the location of defoliation. Thus, with a sufficiently extensive dataset, all features
should be used at least once. This can be used as an indication of how representative a
dataset is. However, depending on the rigor needed, measuring the usage of all pixels
might be too much. Potentially, separating the input in regions would indicate the presence
of shadows or the concentration of defoliation on the same area and require less input.
Thus, the feature coverage should be adaptable to different levels of quantization. Further,
evaluating feature coverage in the test set is more meaningful than in a training set. If a
model uses all features in the test set, that means the training set was diverse enough for
the model to not only use all features but learn their importance. We used a random forest
to measure the feature usage of the model on the test set.

3.5.1. Boundaries

Evaluating whether all features are used at least once might not be enough to assess a
test set. If there is only one image that uses a certain feature, if that image is misclassified,
accuracy could remain high. Thus, measuring feature usage against some expectation
might be more informative.

An indication of how many images are required to use all the features in the input is
given by the coupon collector problem [13]. This is a classic problem in which the collector
randomly collects coupons until all n distinct types of coupons are collected. In this setting,
the probability of collecting a certain coupon is constant, regardless of previously collected
coupons. Therefore, some duplicate coupons are expected. The solution to the coupon



Sensors 2023, 23, 1187 8 of 12

collector problems gives an expectation of how many trials are required until all coupons
are collected. If all coupons have the same probability of being collected, then the expected
number of trials (E[Yn]) is:

E[yn] = n
n

∑
i=1

1

i
. (1)

This is, however, fewer than the number of trials if the probabilities of every coupon
are not identical due to increased probability of repetitions. In our approach, a trial consists
of a visit to a node in any of the trees of the forest. A collected coupon corresponds to a
previously unseen feature. Since decision trees are not structured to be random, features in
our model do not have the same probability of appearing. For example, root nodes of every
tree in the forest have a 100% probability of being collected in the first trial of a sample.
Therefore, we take the previous result as a lower bound on the number of images that need
to be seen.

Alternatively, instead of assuming every visited node on any sample has the same
probability of giving a feature not previously used, we could assume that every image is
slightly different than the rest and that each new image would use exactly one new feature.
A dataset in which this was true would have very good feature coverage but it is unrealistic
as images are likely to differ in more than one feature, and even if they do differ in exactly
one feature that feature might not determine the classification of said input. However, as
an average, this is a useful metric. If in a dataset all images on average added less than one
feature, that would mean the dataset has too much repetition. Here, we can consider again
the coupon collector problem. In this instance, coupons are still features, but a trial is a new
sample image. Using the same formula as above, we have an upper bound for the number
of images to be seen before all features are used.

3.5.2. Application

The dataset we used consists of images that are 108 × 108 pixels. Thus, we had
11,664 features to track. Using our random forest, we measure how many images need to
be classified before all 11,664 features are used at least once by the model. In other words,
for all features f , we find a sample s such that while classifying s, some tree of our random
forest splits the inputs based on the value of f .

Using the bounds defined in the previous section, we can compute the number of test
samples required to use every feature. If the number is above the upper bound, this can
indicate an unbalanced dataset. Further, this result can indicate to a farmer where to go
on the field to evaluate the model predictions with a guarantee that the proposed set of
images would provide full feature coverage, so, a full evaluation can be made. To be sure,
the number of images to be visited might be very large. This can be reduced by relaxing
the constraint on the model using every pixel and replacing it with using a pixel in every
region. This allows for the definition of arbitrarily small regions and finding a set of images
in which every region is relevant. This method can significantly reduce the number of
locations on the field to visit and provides a tunable parameter for rigor.

Finally, this method can identify which features are less common in the dataset. If the
dataset was judged to not cover the field well, then using the proposed approach, we can
identify which of the characteristics of images that need to be added so that the dataset
becomes representative.

3.6. Producing a Minimal Observation Set

Since random forest can highlight the set of features used in each sample, when finding
the number of samples that have to be visited so that all features are used, our approach can
also identify those images that contribute the most to coverage and remove redundancies.
Thus, in our experiments, we first randomly selected images until all of the features were
used and then pruned the set of selected images so that when used by the farmer to make
observations on the field, the locations the farmer must visit are reduced.



Sensors 2023, 23, 1187 9 of 12

4. Results

Figure 7 shows the average values over 10 runs of randomly selecting images until all
features are used and of the minimal dataset obtained from pruning the random dataset
using information given by the forest’s nodes. Both values are compared to the expected
bounds given by the coupon collector problem. All the measurements were performed
in our trained random forest using the test set described above. As described before,
our model can adjust from finding all the features to finding if any feature in a region is
used. This allows a farmer to choose how many locations on the field to observe, while
balancing this decision with how much confidence they should have in the model. Figure 7
presents the number of regions of the image as the x-axis and shows the samples as the
y-axis. The x-axis shows the total number of features counted individually, i.e., an image
of 108 × 108 pixels has 11,664 features and we only consider 20 × 20 regions, that gives
400 features. Figure 7 also shows four different data points for every number of regions.
The first line (blue) is the number of samples required to achieve full feature coverage using
our method of finding the minimal set of images such that all features are used. The red
line is the number of images needed to achieve full coverage when randomly selecting
images, i.e., the blue line shows the value of the red one, but after the optimization. Black is
the expected lower bound given by the solution of the coupon collector problem assuming
identical probabilities for all features. Yellow is the expected upper bound, given by the
solution to the coupon collector problem, assuming that every image provides only one
new feature.

11664 2500 900 400 100 16

1

10

100

1,000

10,000

100,000

1,000,000

Our approach

Random selection

Expected upper 
bound

Expected lower 
bound

Number of pixels regions

N
u

m
b

e
r 

o
f 
s
a

m
p

le
s

 (
lo

g
 s

c
a

le
)

Figure 7. Number of samples needed until all features were used.

Noticeably, the expected upper bound in the samples with more pixels exceeds the
number of available images in the test set (10,213). This is expected since the solution to
the coupon collector problem does not factor in the number of samples available. Further,
the two lines corresponding to measurements seem to exhibit asymptotic behavior. For
larger sets of features, the results seem to approach the number of images available (namely,
images classified as defoliated) in the test set for the random selection. For the minimal
dataset, the result also seems to approach 800 when the set of features is large, but the
requirements do not increase further as features increase. Both these results seem to indicate
that there are some features that are uncommon in the dataset, but that slightly under 10%
of the whole dataset is enough to cover all features.

Figure 8 shows the decrease in the number of samples required to achieve full feature
coverage by different levels of quantization (different number of pixels/regions). The case
with 16 regions is not included in Figure 8 because both results are 2 images, so there is no
reduction. For others, the results oscillate between 56% and 94%.

In terms of the accuracy of the model, the neural network still outperforms the random
forest. However, our approach does not intend to replace the neural network model, but
to complement it by adding interpretability and providing information for the farmer to



Sensors 2023, 23, 1187 10 of 12

make an informed decision on trusting the model. Thus, the accuracy of the model is the
reported by DefoNet, i.e., over 90% accuracy and over 90% recall and precision [5].

P
e
rc

e
n

t 
re

d
u

c
ti
o
n

11,664 2500 900 400 100

0

15

30

45

60

75

90

Percent reduction in samples

Number of pixel regions

Figure 8. Percent decrease in samples needed to achieve full feature coverage by minimal set with

respect to random sampling.

5. Discussion

Our approach effectively trains a random forest to attempt to learn the function
produced by a neural network. As discussed previously, this allows us to obtain certain
insights from the model. This is not a result coming from an experiments, but a consequence
of the used structures. Further, since neural networks are hard to explain, it is hard to
effectively verify that the conclusions about DefoNet drawn through our random forest
are correct.

In regards to our goal of evaluating whether a dataset is a good representation of the
field, we observed on most inputs that the number of samples needed was between the
expected upper and lower bounds, which indicates a good level of coverage. However,
when using all the features available, the expected lower bound was higher than the
number of images classified as defoliated, so the actual results were under the lower bound.
While surprising, this fact makes sense given the formula used to solve the coupon collector
problem. It is likely insightful that the dataset had a full feature coverage when using all
of the images. However, future work might look into biased datasets and check how they
compare. An additional detail to consider is how for inputs of size 20x20, the expected
upper bound came very close to the actual measured value for random selection. This
means that when evaluating a dataset for balance, the input size matters as specific input
sizes might be outliers. For all experiments with more than 400 pixels, the number of
samples needed in random selection was very close to the number of defoliated samples
in the dataset. Future work might explore the point at which this starts to happen. It
makes sense that for a sufficiently large number of features all samples are needed, but
how many features are needed for this to occur might be insightful. Regardless, in all cases,
the minimal dataset was much smaller than the random sampling. Thus, a few different
levels of quantization are recommended so that outliers in the results can be more easily
spotted. Nonetheless, the results in that case were still under the limit and the minimal set
was far from the upper bound, which also supports the idea of a well-balanced set.

Finally, the results show that the minimal set of samples is consistently smaller than
the set of samples given by random selection. This shows that the information available



Sensors 2023, 23, 1187 11 of 12

due to the interpretability of random forests helps reduce the set of samples a farmer would
need to look at by up to 94%, thus showing the value of this technique to farmers.

6. Conclusions

Farmers can benefit from ML models that help with the timely identification of pests
and other threats to crops. One type of such ML models are machine vision models that
recognize defoliation in crops. Typically, these models use neural networks to maximize
accuracy. However, neural network models are not interpretable. Thus, farmers may not
have a way to verify that the model given is effective. While showing a high accuracy in
a test set can induce some confidence, this represents performance of the ML model in
another field. To trust the model given, a farmer might want to verify the model and the
test set. For this, a farmer would want to:

1. Spot check specific locations in the field and compare to model prediction;
2. Evaluate the coverage of a dataset (test set) in a field;
3. Modify the dataset by adding images if coverage is not complete;
4. Understand why the model makes the predictions that it does.

We propose an approach in which the output of a trained neural network is used
to train a random forest. We then show that this method can satisfy the first three goals
described above and provide an approximation for the fourth one. We start by quantifying
coverage of a field by comparing the usage of features with solutions to the coupon collector
problem. Then, we find a set of images so that the coverage is complete. The quantification
of coverage gives the evaluation of the dataset and the ability to recognize missing images in
the dataset. The set of images with full coverage provides the list of locations to spot check.
Finally, the random forest provides an approximation to an interpretation of the neural
network. By employing this method, we showed that we can produce a set of locations to
spot check that is 94% smaller than a randomly selected set that also has full coverage.

Author Contributions: Conceptualization, E.R.-G. and C.S.; methodology, E.R.-G. and C.S.; software,

E.R.-G.; validation, E.R.-G. and C.S.; formal analysis, E.R.-G. and C.S.;writing—original draft prepara-

tion, E.R.-G.; writing—review and editing, E.R.-G. and C.S.; supervision, C.S.; project administration,

E.R.-G. and C.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data and code available at https://github.com/EduardoRomero83/

TreeExplorationOfDefoNet (accessed on 31 October 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tetila, E.C.; Machado, B.B.; Astolfi, G.; de Souza Belete, N.A.; Amorim, W.P.; Roel, A.R.; Pistori, H. Detection and classification of

soybean pests using deep learning with UAV images. Comput. Electron. Agric. 2020, 179, 105836. [CrossRef]

2. Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision

agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [CrossRef]

3. Zhang, Z.; Boubin, J.; Stewart, C.; Khanal, S. Whole-Field Reinforcement Learning: A Fully Autonomous Aerial Scouting Method

for Precision Agriculture. Sensors 2020, 20, 6585. [CrossRef] [PubMed]

4. Wang, S.C. Artificial neural network. In Interdisciplinary Computing in Java Programming; Springer: Berlin/Heidelberg, Germany,

2003; pp. 81–100.

5. Zhang, Z.; Khanal, S.; Raudenbush, A.; Tilmon, K.; Stewart, C. Assessing the efficacy of machine learning techniques to

characterize soybean defoliation from unmanned aerial vehicles. Comput. Electron. Agric. 2022, 193, 106682. [CrossRef]

6. Patil, S.; Pardeshi, S.; Patange, A.; Jegadeeshwaran, R. Deep learning algorithms for tool condition monitoring in milling: A

review. J. Phys. Conf. Ser. IOP Publ. 2021, 1969, 012039. [CrossRef]

7. Quinlan, J.R. Learning decision tree classifiers. ACM Comput. Surv. (CSUR) 1996, 28, 71–72. [CrossRef]

8. Deo, T.Y.; Patange, A.D.; Pardeshi, S.S.; Jegadeeshwaran, R.; Khairnar, A.N.; Khade, H.S. A white-box SVM framework and its

swarm-based optimization for supervision of toothed milling cutter through characterization of spindle vibrations. arXiv 2021,

arXiv:2112.08421.

https://github.com/EduardoRomero83/TreeExplorationOfDefoNet
https://github.com/EduardoRomero83/TreeExplorationOfDefoNet
http://doi.org/10.1016/j.compag.2020.105836
http://dx.doi.org/10.1016/j.compag.2017.05.001
http://dx.doi.org/10.3390/s20226585
http://www.ncbi.nlm.nih.gov/pubmed/33218000
http://dx.doi.org/10.1016/j.compag.2021.106682
http://dx.doi.org/10.1088/1742-6596/1969/1/012039
http://dx.doi.org/10.1145/234313.234346


Sensors 2023, 23, 1187 12 of 12

9. Khade, H.; Patange, A.; Pardeshi, S.; Jegadeeshwaran, R. Design of bagged tree ensemble for carbide coated inserts fault diagnosis.

Mater. Today Proc. 2021, 46, 1283–1289. [CrossRef]

10. Khairnar, A.; Patange, A.; Pardeshi, S.; Jegadeeshwaran, R. Supervision of Carbide Tool Condition by Training of Vibration-based

Statistical Model using Boosted Trees Ensemble. Int. J. Perform. Eng. 2021, 17, 229–240. [CrossRef]

11. Tambake, N.R.; Deshmukh, B.B.; Patange, A.D. Data Driven Cutting Tool Fault Diagnosis System Using Machine Learning

Approach: A Review. J. Phys. Conf. Ser. IOP Publ. 2021, 1969, 012049. [CrossRef]

12. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

13. Neal, P. The Generalised Coupon Collector Problem. J. Appl. Probab. 2008, 45, 621–629. [CrossRef]

14. Marchese Robinson, R.L.; Palczewska, A.; Palczewski, J.; Kidley, N. Comparison of the predictive performance and interpretability

of random forest and linear models on benchmark data sets. J. Chem. Inf. Model. 2017, 57, 1773–1792. [CrossRef]

15. Romero-Gainza, E.; Stewart, C.; Li, A.; Hale, K.; Morris, N. Memory Mapping and Parallelizing Random Forests for Speed

and Cache Efficiency. In Proceedings of the 50th International Conference on Parallel Processing Workshop, Lemont, IL, USA,

9–12 August 2021; Association for Computing Machinery: New York, NY, USA, 2021; ICPP Workshops ’21. [CrossRef]

16. Romero, E.; Stewart, C.; Li, A.; Hale, K.; Morris, N. Bolt: Fast Inference for Random Forests. In Proceedings of the 23rd ACM/IFIP

International Middleware Conference, Quebec, QC, Canada, 7–11 November 2022; pp. 94–106.

17. O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458.

18. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

19. Almeida, J.S. Predictive non-linear modeling of complex data by artificial neural networks. Curr. Opin. Biotechnol. 2002, 13, 72–76.

[CrossRef]

20. Lee, J.; Xiao, L.; Schoenholz, S.; Bahri, Y.; Novak, R.; Sohl-Dickstein, J.; Pennington, J. Wide neural networks of any depth evolve

as linear models under gradient descent. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook,

NY, USA, 2019; Volume 32.

21. Dumitrescu, E.; Hué, S.; Hurlin, C.; Tokpavi, S. Machine learning for credit scoring: Improving logistic regression with non-linear

decision-tree effects. Eur. J. Oper. Res. 2022, 297, 1178–1192. [CrossRef]

22. Yin, C.; Cao, J.; Sun, B. Examining non-linear associations between population density and waist-hip ratio: An application of

gradient boosting decision trees. Cities 2020, 107, 102899. [CrossRef]

23. Paez, A.; López, F.; Ruiz, M.; Camacho, M. Inducing non-orthogonal and non-linear decision boundaries in decision trees via

interactive basis functions. Expert Syst. Appl. 2019, 122, 183–206. [CrossRef]

24. Sealey, V. Definite integrals, Riemann sums, and area under a curve: What is necessary and sufficient. In Proceedings of the 28th

Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education; Universidad

Pedagógica Nacional Mérida: Mérida, Mexico, 2006; Volume 2, pp. 46–53.

25. Krishnan, R.; Sivakumar, G.; Bhattacharya, P. Extracting decision trees from trained neural networks. Pattern Recognit. 1999,

32, 1999–2009. [CrossRef]

26. Craven, M.W.; Shavlik, J.W. Extracting Tree-Structured Representations of Trained Networks. In Proceedings of the NIPS, Denver,

CO, USA, 27–30 November 1995.

27. Johansson, U.; Niklasson, L. Evolving Decision Trees Using Oracle Guides. In Proceedings of the 2009 IEEE Symposium on

Computational Intelligence and Data Mining, Nashville, TN, USA, 30 March–2 April 2009; pp. 238–244. [CrossRef]

28. Rudin, C. Please stop explaining black box models for high stakes decisions. Stat 2018, 1050, 26.

29. Hawkins, D.M. The problem of overfitting. J. Chem. Inf. Comput. Sci. 2004, 44, 1–12. [CrossRef] [PubMed]

30. Hong, S.; You, T.; Kwak, S.; Han, B. Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural

Network. In Proceedings of the 32nd International Conference on International Conference on Machine Learning (ICML

2015), Lille, France, 6–11 July 2015; Volume 37, pp. 597–606. Available online: https://proceedings.mlr.press/v37/hong15.html

(accessed on 1 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.matpr.2021.02.128
http://dx.doi.org/10.23940/ijpe.21.02.p7.229240
http://dx.doi.org/10.1088/1742-6596/1969/1/012049
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1239/jap/1222441818
http://dx.doi.org/10.1021/acs.jcim.6b00753
http://dx.doi.org/10.1145/3458744.3474052
http://dx.doi.org/10.1016/S0958-1669(02)00288-4
http://dx.doi.org/10.1016/j.ejor.2021.06.053
http://dx.doi.org/10.1016/j.cities.2020.102899
http://dx.doi.org/10.1016/j.eswa.2018.12.041
http://dx.doi.org/10.1016/S0031-3203(98)00181-2
http://dx.doi.org/10.1109/CIDM.2009.4938655
http://dx.doi.org/10.1021/ci0342472
http://www.ncbi.nlm.nih.gov/pubmed/14741005
https://proceedings.mlr.press/v37/hong15.html

	Introduction
	Overview of System Proposed
	Materials and Methods
	Dataset
	Neural Network Model
	Random Forest Training
	Characterization of a Neural Model through Random Forests
	Quantification of Feature Coverage
	Boundaries
	Application

	Producing a Minimal Observation Set

	Results
	Discussion
	Conclusions
	References

