t.)

Check for
Updates

Effective Performance Modeling and Domain-Specific Compiler
Optimization of CNNs for GPUs

Yufan Xu Qiwei Yuan Erik Curtis Barton
yf.xu@utah.edu joshua.yuan@utah.edu u0882558@utah.edu
University of Utah University of Utah University of Utah

Salt Lake City, Utah, USA

Salt Lake City, Utah, USA

Salt Lake City, Utah, USA

Rui Li P. Sadayappan Aravind Sukumaran-Rajam
lirui@cs.utah.edu saday@cs.utah.edu aravind_sr@outlook.com
University of Utah University of Utah Meta Platforms

Salt Lake City, Utah, USA Salt Lake City, Utah, USA Menlo Park, California, USA

ABSTRACT

The Convolutional Neural Network (CNN) kernel is a fundamen-
tal building block for deep learning, which dominates the compu-
tational cost of deep learning pipelines for image analysis. The
synthesis of high-performance GPU kernels for CNNs is thus of
considerable interest. The current state-of-the-art in optimizing
CNN kernels is auto-tuning search using AutoTVM/Ansor, which
has been shown to achieve higher performance than vendor li-
braries as well as polyhedral compilers. A primary reason for the
failure of general-purpose optimizing compilers to deliver high-
performance code for key kernels like CNN is the challenge of
accurate performance modeling to enable effective choice among
alternative transformations and/or parameter values such as tile
sizes. In this paper we ask if a domain-specific compiler that is
customized for the important CNN kernel can be more effective.
Our results show that it can be very effective, enabling even higher
performance of the generated GPU code for CNNs than auto-tuning
with TVM/Ansor. Further, we demonstrate the effectiveness of a
performance modeling approach that integrates analytical model-
ing of data movement volume with machine learning for offline
training, enabling much more rapid code optimization than the
approach of TVM/Ansor that is based on online construction of a
machine learning model to guide auto-tuning search.

CCS CONCEPTS

+ Computing methodologies — Parallel computing method-
ologies; Neural networks; « Software and its engineering —
Compilers; Software performance.

KEYWORDS

CNN, GPU, Design space exploration, Tile size optimization, Per-
formance modeling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PACT ’22, October 8-12, 2022, Chicago, IL, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9868-8/22/10...$15.00
https://doi.org/10.1145/3559009.3569674

252

ACM Reference Format:

Yufan Xu, Qiwei Yuan, Erik Curtis Barton, Rui Li, P. Sadayappan, and Ar-

avind Sukumaran-Rajam . 2022. Effective Performance Modeling and Domain-
Specific Compiler Optimization of CNNs for GPUs. In International Con-

ference on Parallel Architectures and Compilation Techniques (PACT ’22),

October 8-12, 2022, Chicago, IL, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3559009.3569674

1 INTRODUCTION

Optimizing the Convolutional Neural Network (CNN) computation
for GPUs is a very challenging task. A huge combination of choices
exist for parameters determining the shape/size of thread blocks',
work distribution among warps in a thread block, size/shape of reg-
ister tiles at each thread, and tile loop permutations in the thread
code. Due to the fact that the convolutional neural network stages
dominate the compute time of DNN pipelines for image analysis
applications, there have been numerous efforts to optimize the CNN
kernel. These efforts can be classified into three broad categories:
Auto-tuning frameworks: Auto-tuners such as AutoTVM [2, 3],
now integrated with the Ansor[18] optimizer, search in a large
space of possible code variants. The search is guided by use of a
dynamically constructed Machine Learning performance model
trained with timing data from actual execution of many code vari-
ants on the target GPU platform during the auto-tuning search.
Polyhedral Compilers: Since the CNN computation is a purely
affine loop computation, it is amenable to optimization by poly-
hedral compilers like PPCG [16], Tiramisu[1] and TensorCompre-
hensions [15]. However, it has been shown that AutoTVM [2] and
Ansor[18] generate much higher performing GPU code for CNN
than Polyhedral GPU compilers. A primary reason is that polyhe-
dral compilers to date have only been able to optimize code using
linear objective functions and tilesize optimization is an inherently
nonlinear optimization problem.

Vendor Libraries: Vendor libraries like cuDNN [4] are engineered
by GPU experts to be well matched to low-level architectural fea-
tures and therefore achieve extremely high performance close to
machine peak for sufficiently large problem sizes. However, for
the actual sizes/shapes of convolution stages found in practically
used CNN image processing pipelines like ResNet [5] and Yolo

!We use Nvidia CUDA terminology in this paper, but the concepts are directly appli-
cable to other GPUs and GPU programming models like HIP/ROCm, OpenCL, SyCL
etc.

https://doi.org/10.1145/3559009.3569674
https://doi.org/10.1145/3559009.3569674
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3559009.3569674&domain=pdf&date_stamp=2023-01-27

PACT °22, October 8-12, 2022, Chicago, IL, USA

[13], the achieved performance is often lower than that achieved
by optimized GPU code synthesized by TVM/Ansor.

For a given CNN pipeline, the size of each convolutional kernel
is generally fixed and known at compile time. Hence, it is possible
to create customized kernels optimized for the specific sizes of
tensors for each stage in a CNN pipeline (as is done by auto-tuning
frameworks like TVM/Ansor), providing an advantage over a library
like cuDNN that cannot use layer-specific optimized code for each
stage in a DNN pipeline.

This paper seeks answers to the following two questions:

(1) Although state-of-the-art auto-tuning search via TVM/Ansor

has been shown to achieve substantially higher performance
for CNN on GPUs than polyhedral compiler optimization [2,
18], can a domain-specific approach to compiler optimization
do better than state-of-the-art auto-tuning search?

(2) While auto-tuning search with TVM/Ansor can generate
GPU CNN kernels with higher performance than state-of-
the-art vendor libraries like cuDNN, it generally requires
a very large number of compile/execute trials to do so, in
the order of a thousand or more, thereby needing several
hours of time to optimize a DNN pipeline. Can a domain-
specific approach enable much faster generation of GPU
CNN kernels than Ansor/TVM?

This paper provides an affirmative answer to both the above

questions:

Code Quality (Performance):With respect to the first question,
we show that although the design space of all possible GPU im-
plementations of the CNN kernel is explosively large, we can use
domain-specific analytical modeling to significantly prune the huge
design space. Guided by the analysis, we devise two GPU CNN ker-
nel schemas with parametric tile sizes. Further, by imposition of
capacity constraints from registers and scratchpad memory, the
number of pruned kernel configurations is typically no more than
a few thousand for representative CNN kernels - we evaluated the
CNN kernels from three DNN pipelines: ResNet-18 [5], Yolo9000
[14], and DefoNet [17]. Thus, the total number of pruned config-
urations to consider is of the same order of the number of com-
pile/execute trials typically needed for auto-tuning search with
TVM/Ansor. We demonstrate consistently superior performance
of the generated CNN kernels over both cuDNN and TVM/Ansor.
Details are presented in Sec. 3.

Code Optimization Time: With respect to the second question,
we develop an off-line regression model for the predicted execution
time for any set of tile sizes for any given set of CNN parameters
(sizes of activations and kernel weights) for each target GPU plat-
form. In addition to the standard features that would be used to
build a machine learning model to predict execution time of. code
version (tile sizes, tensor sizes, total number of operations, etc.),
we also include additional features from analytical modeling of
the volume of data movement between global and shared memory
and between shared memory and registers. The regression model
is then used to rapidly evaluate a Top-n set of configurations via
actual compile/execute on the target GPU platform. We demon-
strate that the number of evaluations needed to achieve comparable
performance with our domain-specific optimization approach is sig-
nificantly lower than needed by TVM/Ansor. Details are presented
in Sec. 4.

253

Yufan Xu, Qiwei Yuan, Erik Curtis Barton, Rui Li, P. Sadayappan, and Aravind Sukumaran-Rajam

The key contributions of the paper are as follows:

o It presents the first evidence (to our knowledge) that an
approach based on analytical performance modeling can
surpass achieved performance for GPU CNN kernels than
that achievable via the state-of-the-art TVM/Ansor auto-
tuning search framework.

o It demonstrates the effectiveness of a new approach to per-
formance modeling that includes analytically derived perfor-
mance metrics among the input features used for training a
machine learning regression model.

o The effectiveness of the domain-specific optimization ap-
proach is demonstrated on two GPUs (Nvidia Volta V100 and
2080 Ti) by synthesizing higher performing GPU CNN ker-
nels than the state-of-the-art vendor library cuDNN and the
state-of-the-art auto-tuning compiler framework TVM/An-
sor, for the convolution stages of three image-processing
CNN pipelines (ResNet18[5], Y0lo9000[14], and DefoNet
[17]). Further, we demonstrate the ability to generate code
of comparable/better performance using vastly fewer com-
pile/execute trials than TVM/Ansor.

2 BACKGROUND AND OVERVIEW OF PAPER

A GPU kernel for computing the convolution operation at a specific
CNN layer in a pipeline is generally implemented as a collection of
loops executed by each thread, so that the set of parallel threads
collectively execute all the needed elementary operations. GPUs use
a two-level thread hierarchy where a collection of threads forms a
thread-block and a collection of thread-blocks forms a grid. The total
number of threads in the grid collectively execute all operations
needed to produce all elements of the result tensor. Each thread can
be responsible for many output elements; conversely a collection of
threads might partially contribute to an output element. There are a
combinatorially explosive number of possible ways of mapping the
total work to be performed onto a set of threads and the sequential
order in which each thread executes the operations it is responsible
for. The full space of design choices may be considered to be the set
of all possible valid GPU programs that compute the given CNN
computation.

The task of designing a high-performance GPU kernel for a given
CNN stage may be viewed as a design-space exploration problem
with an extremely large space of possible designs. AutoTVM [2] is a
very effective framework that performs an auto-tuning search in the
large space of possible loop configurations and tile sizes, guided by a
dynamically generated ML model. The overall optimization process
proceeds as a sequence of outer steps. A progressively refined ML
model is used at each step, to rapidly evaluate a large number of
candidate code configuration choices (tile size parameters and loop
permutations) and a batch of the best predicted configurations are
synthesized as CUDA codes, compiled by the Nvidia nvce compiler
and executed on the target GPU platform. The measured set of
execution times from the current step are used as samples to further
train the ML performance model. The best configuration from the
current step is also recorded if it improves on the best time achieved
so far. As the outer steps proceed, the best achieved time tends to
improve for a while and then plateau. Typically, several hundreds
to a few thousands of code versions are generated, compiled and

Effective Performance Modeling and Domain-Specific Compiler Optimization of CNNs for GPUs

executed and the best of all tested configurations is used as the
optimized output kernel. Recently, the Ansor [18] optimizer was
incorporated into the AutoTVM framework as the AutoScheduler
option, and has been shown to generate better performing code
than the original AutoTVM search strategy[2]. In this paper, we
use the TVM AutoScheduler in all experimental comparisons with
our developed kernels, referring to it as TVM/Ansor.

AutoTVM and Ansor do not use analytical performance models
but use a data-driven ML model as the basis for their search through
a design space of code configurations to generate, compile, and
execute in the auto-tuning process. Several questions of interest in
this study are:

o s there potential to do even better than the impressive perfor-
mance results achieved by AutoTVM/Ansor for generating
high-performance GPU kernels for CNN pipeline stages?

e Although analytical performance models used in polyhe-
dral optimizing compilers have not so far been shown to
be competitive with TVM/Ansor [2], can a domain-specific
approach based on analytical modeling be more effective?

o For scenarios where the excessive auto-tuning time of TVM/
Ansor (typically many hours to generate high-performance
GPU CNN kernels for a full DNN pipeline) is unsatisfactory,
can any alternate performance modeling approach be devel-
oped that can achieve much faster results for GPU kernel
optimization for CNN compared to that taken by TVM/An-
sor?

We proceed as follows to address the above questions. First, con-
sider the full space of all possible GPU programs for computing the
convolution operations for a specified CNN stage. The possible code
versions that are explored by TVM/Ansor are clearly only a very
small sub-space of the full space of all possible CUDA programs for
a given CNN stage, guided by a dynamically constructed machine
learning model using data from compiling and executing a set of
code configurations. Instead, we use analytical modeling as a means
of pruning the design space of code configurations.

We start with a generic multi-dimensional nested tile loop struc-
ture corresponding to the GPU thread hierarchy and then use ana-
lytical reasoning about data movement to concretize sub-set code
schemas from the generic schema by pruning away many sub-
optimal choices with respect to data movement. By use of analytical
reasoning, we further prune the design space to eliminate configu-
rations that violate capacity constraints on available register counts
and scratchpad shared-memory capacity, leaving only a manage-
able set of a few thousand configurations that we can exhaustively
enumerate. We present the design and experimental evaluation in
Sec. 3.

We then develop an effective performance model for rapid selec-
tion of a small subset of the pruned space of code configurations to
compile and execute on the target platform. We develop an off-line
ML regression model to predict execution time of a code config-
uration by generating a large training set of code configurations
for a collection of random CNN problem sizes and tile sizes. In
addition to using the tensor extents and tile sizes along the differ-
ent iteration-space dimensions as input features for developing the
regression model, we also include analytically derived features such
as the estimated data movement volume between global memory
and shared memory, and between shared-memory and registers.

254

PACT °22, October 8-12, 2022, Chicago, IL, USA

Table 1: Description of Notation

Description Description
N Batch size Ty # threads in x dim
X Width of Output Wy # warps in x dim
Y Height of Output By | # threadblocks in x dim
Fyx | Width of Kernel/Filter || R* Register Tile Size
Fy | Height of Kernel/Filter || T* Warp Tile Size
K # Output Channels W* | Threadblock Tile Size
C # Input Channels B¥ Grid Tile Size

We present details of the performance modeling and experimental
evaluation in Sec. 4.

3 GPU KERNEL DESIGN AND ANALYTICAL
PRUNING OF SEARCH SPACE

In this section, we present the design of our GPU CNN kernels,
where analytical modeling is used to significantly prune the very
large design space. Table 1 shows the parameter naming convention
we use in this paper. As elaborated later in this section, we use multi-
level tiling along each of the iteration-space dimensions of the CNN
computation. The levels of tiling correspond to the multiple levels
of parallelism in the GPU thread hierarchy: each thread can have
a register-level tile along each iteration-space dimension, a set of
threads form a warp, a set of warps form a thread-block, and a set of
thread-blocks constitute the grid of threads that performs the entire
computation. Consider the horizontal spatial dimension along an
image, denoted by X, the width of the output image. With multi-
level tiling, there exists a tile at each level of tiling that corresponds
to that dimension x, with the product of tile-loop extents at all
levels equalling the full extent X. At any given level, the number
of tiles at that level is denoted by a subscripted tile parameter,
while the cumulative tile size is denoted with a superscripted tile
parameter. The register-level tile size along x is denoted R*. A
group of Ty threads in a warp span equal distinct extents along
that iteration-space dimension, giving a cumulative tile size that
is denoted T* = Ty x R*. Similarly, at the next level of tiling, Wy
denotes the number of warps that span distinct extents along the x-
dimension of the iteration space, while W* = Wy X Ty X R* denotes
the cumulative tile size at that level.

3.1 Design Overview

Out[n, k,y,x] = Z In[n, c,y+fy, x+fx]xKerlk,c, fy, fx] (1)
ofxfy

Equation 1 shows simplified code for a convolutional operator
(stride/dilation are not shown, but the optimization approach also
applies to all strided/dilated kernels; stride-2 kernels are included in
the experimental evaluation). Tiling is a fundamental technique to
improve data reuse. At a high level, the generation of an optimized
GPU kernel for this loop code may be systematically modeled as
a multi-level tiling, with tiles at different levels representing a
partitioning of the 7D iteration space in a nested fashion onto the
multi-level parallel GPU execution model. A CUDA program is
organized as a collection of independently executing thread-blocks,
with each thread block being comprised of a number of warps, the

PACT °22, October 8-12, 2022, Chicago, IL, USA

basic unit of hardware scheduling where a group of 32 threads form
a warp. Our objective is to effectively map the CNN computation
to the GPU thread hierarchy, minimizing data movement through
the memory hierarchy.

Fig. 1(a) shows a 6D loop code for the convolution computation
(we omit the batch index in our discussion, allowing us to focus
on the more challenging case of performance optimization where
batch-size=1). Fig. 1(b) shows an abstract multi-level tiled form
of the CNN code, with a tile loop-band for each level in the GPU
thread hierarchy: the grid level, thread block level, warp level, and
thread-level (register) tiling. At the innermost loop-band, we use
two variants, the RS Kernel shown in Fig. 1(c), and the S Kernel,
shown in Fig. 1(d).

Of the 6 loops in Fig. 1(a), three represent reduction loops, corre-
sponding to a summation over those dimensions, as seen in Eq. 1: C,
Fy,and F Y- The remaining three loops, over X, Y, and K, are parallel
loops that collectively loop over the computation to produce the
X X Y x K output tensor elements. Since Fy and F, are generally
small prime numbers (usually 1, 3, 5, or 7) and cannot be factored,
tiling of those loops is not considered and they only appear in the
innermost loop band (the RS or S kernel). The loop dimensions
corresponding to the parallel loops, X, Y, and K are potentially
tiled at every level in the hierarchy. The previously described nam-
ing convention for tiles is summarized in Fig. 1(e). Consider the
tiling of the output channel dimension of total extent K. At the
innermost level, each thread has a register-level tile size Rk, where
the base R represents the register level of tiling, and the superscript
k denotes the register tile extent. We require the tile size R¥ to be
a factor of the total extent along that iteration space extent, K. At
the next level, the set of threads in a warp (32) are factored into a
product Ty X Ty X Ty = 32, where Ty, Ty, Ty represent the number of
iterations of the corresponding tile loops at the warp-level. Along
the output channel dimension k, each thread traverses a range of
RK, and the set of 32 threads in a warp collectively traverse a tile
of span Rk x Ti., denoted as Tk, Similarly, at the next higher level
in the thread hierarchy, a collection of warps forms a thread-block.
The number of warps along the parallel loop dimensions at the
thread-block level are denoted Wy, Wy, W, with the tile extent
spanned by all threads in a thread block along the k dimension
being WK = Wi, x TK = Wi x T, x RF. At the innermost tile band
corresponding to register tiling, two alternate GPU kernels are con-
sidered (for reasons discussed later in this section), the RS Kernel
and the S Kernel. These choices, based on domain-specific analysis,
combined with capacity-based pruning reduce the total number of
distinct loop configurations to a few hundreds to thousands, which
can be exhaustively enumerated (by compiling and execution on
the target GPU) at a comparable cost to that taken by TVM/Ansor
via its online auto-tuning search with a dynamically constructed
ML model. Further, as we demonstrate in Sec. 4, we can dramati-
cally reduce the time for optimized code synthesis by developing
an off-line hybrid analytical-ML performance model.

3.2 Design Details

Pruning Register Tiles for Input Channel: Parallelizing the
reduction loop over the input channel dimension (c) will result
in multiple threads contributing to the same output point, which

255

Yufan Xu, Qiwei Yuan, Erik Curtis Barton, Rui Li, P. Sadayappan, and Aravind Sukumaran-Rajam

necessitates atomic updates. In order to avoid this, we do not paral-
lelize the C dimension at the thread/warp level.

It is desirable to maximize the reuse of output elements, es-
pecially since each contribution to the output results in a read-
write operation. Hence we place a slice of the output tensor of size
RK X RY x RX in registers, abstracted in Fig. 1 as Oreg.

The tile size for each loop affects the data movement and resource
usage, which in turn affects thread occupancy (concurrency). We
do not tile the C loop at the register level. Our reasoning is as
follows. The data movement at the register level per thread can
be expressed as (Fx X Fyy x Rk + (R* + Fx = 1) x (RY + Fy - 1))
and the data register capacity requirement can be expressed as
(R® X R¥ X RY + R° X (R* + Fx — 1) X (RY + Fy, — 1). It may be seen
that R¢ appears only in the capacity expression but does not appear
in the data movement expression, which implies that the choice
of R® does not directly affect the data movement but affects the
capacity requirement. Based on the above analysis, any value of
register-level tiling of R¢ that is larger than 1 is clearly sub-optimal,
since it will force smaller values for other register-tile sizes, which
all appear in the denominator for the data volume expression. We
therefore do not need to include any register-tile loop for C.
Design space pruning via capacity constraints: We first discuss
the RS-kernel, which holds an output tile of size RK x RY x RX
stationary in the registers per thread. This design allows read-write
reuse of Fy X Fy X C per output element. Similarly, each thread
keeps an input slice of dimension (R* + Fx — 1) X (RY + Fy — 1).
Each input element (except boundary elements) achieves a register
level reuse of RF x Fy X Fy.

Multiple threads in a warp are distributed along the output chan-
nel dimension and hence do not require any intra warp reduc-
tion operations. So, the warp shape is Ty, Ty, Ty. The remaining
threads in a thread block are split into Wy, Wy, W, representing a
slice of X, Y and K dimension resulting in a thread block of shape
(Tye X Wy, Ty X Wy, Ty X Wy). The tile sizes are selected such that
the total number of registers in equation 2 required by each thread
block to hold input-output operands for computation, is less than
the maximum number of registers per thread block (hardware limit).

((R*XRYXRK)+(RY+Fy—1)+(R* +Fx—1)+1) X (Te X Ty X T) (2)

Impact of Thread Occupancy: S Kernel: One drawback of the
RS-Kernel is the high register capacity requirement, which can
adversely affect thread occupancy. The high register usage for input
register tiles can result in low thread occupancy, which can result in
reduced performance. Hence, we also consider an alternate version
of the RS-kernel called the S-kernel (Listing 1 d)). In contrast to
the RS-kernel’s register usage in equation 2, the S-kernel design
only holds a 1D input slice of size (R* + Fy — 1) in registers, which
reduce the register usage for a single thread and potentially have a
chance to increase occupancy. Like the RS kernel, each thread holds
an output tile of size R¥ X RY X RK stationary in the registers. An
additional register is used to hold the kernel element. The tile sizes
are selected such that the total number of registers in equation 3
required by each thread block to hold input-output operands for
computation, is less than the maximum number of registers per
thread block (hardware limit).

(REXRYXRE) + (R*+Fy 1)+) X (Te xTy x Tp) (3)

Effective Performance Modeling and Domain-Specific Compiler Optimization of CNNs for GPUs

PACT °22, October 8-12, 2022, Chicago, IL, USA

a) Conv2d Untiled Code

b) Convad Explicit Tiling Code on GPUs

for kin range(0, K):
for x in range(0, X):
foryinrange(0, Y):
for cin range(0, C):
for fy in range(0, F,): ! >
for fx in range(0, E;):
Out[k,y,x]+=In[c,y+fy,x+fx]

// Grid level tiling
forall be in range(0, C, BS):
forall bk in range(0, K, W¥):
forall bx in range(0, X, W*):
forall by in range(0, Y, W?):
for cin range(bc, bc + B¢, W¢):
// shared memory loading
gy = In[c,by:by + WY + E,-1, bx: bx + W* + E-1]
Ksm = Ker[bk: bk + W¥,c,F,, E]
// Thread block level tiling
forall wk in range(bk, bk + Wk, T¥):
forall wx in range(bx, bx + W*,T*):

forall wy in range(by, by + W7, T?):
// Warp level tiling
forall tk in range(wk, wk + T¥, R¥):
forall tx in range(wx, wx + T*, R%):
forall ty in range(wy,wy + TY,RY):
// Register Tiling

x Ker[k,c,fy,fx]
€) Notation

Wk = W,xTk W*=W,xT*
WY = VVy X TY
Tk = T, X R¥ T* =T, X R*
TY =T, XRY
K = Byxwk X = B, XW*
Y = By xwW?>
Threads per Warp =T, X T,, X T}
Threads per TB = (Tx X T, X Tk)

X We X W, X Wy
Number of TBs = By X B, X By,

l RS /S Kernel E:
I

C) RSKernel

Vs

d) S Kernel

V4
Oreg[O:Rk, 0:RY,0:R*]=0
Legl0:RY + F-1, 0: R* + E-1] = [ty: ty + RY + F,-1,
tx:tx + R* + F.-1]
for fy in range(0, F,):
for fx in range(0, E,):
for k in range(0, R¥):
Kreg= smltk +k, fy, fx]
for x in range(0, R*):
fory in range(0, RY):
Oreg[k'er] = Kreg X Ireg[y + fyrx + fx]

Oregl0: R¥,0:RY,0:R*]=0
for fy in range(0, E,):
fory in range(0, RY):
Lregl0: R* + Fe-11= Isn[ty + fy, tx: tx + R* + F-1]
for fx in range(0, Fy):
for k in range(0, R¥):
Kreg= Ksmltk + k. fy, fx]
for xin range(0, R*):
Oreg[k: ¥, x] += Kreg X Ireg[x + fx]

Figure 1: Abstracted Structure of Design Space of CNN Kernels for GPU

Tail effect and Synchronizations: Reduction Parallelism along
Input Channels: Tail effects (also called wave effects) refer to load
imbalance in GPU execution that can occur when the total number
of thread blocks is not much larger than the number of SMs (Stream-
ing Multiprocessors) in a GPU. For example, if the number of thread
blocks is 80 and the GPU has 64 SMs, a first wave of 64 thread blocks
will keep all SMs busy, but the remaining 16 thread blocks will only
keep one fourth of the SMs occupied during the second wave. This
is often the case for later stages of DNN pipelines where X and Y
are small and C and K are large. For such CNN stages, it may be
desirable to utilize reduction parallelism across the input channel
dimension c. By splitting C across multiple thread blocks, we can
increase the total number of thread blocks. This implies increased
global memory traffic of output elements and the need for atomic
operations. Nevertheless, in some cases, the gains from alleviating
tail effects can overcome the cost of splitting C. The top figure of
Fig. 2 shows details of the RS-kernel mapping, and the bottom one
shows the S-kernel design.

3.3 Experimental Evaluation

Next, we present performance data from experimental evaluation.
We used the non-degenerate convolution layers (i.e., excluding 1x1

convolutions, which are essentially simpler matrix-matrix multipli-
cation operations) in three CNN networks (Resnet18[6], Yolo9000[14]
and DefoNet[17]) as the benchmarks for evaluation. The size pa-
rameters for these convolution layers are provided in Table 2.

We compare the performance of the best code version found by
exhaustive search over feasible configurations of the RS-kernel and
S-kernel (which we label CNNOpt) with both Nvidia’s cuDNN[4]
(v8.2) library (state-of-the-art CNN library) and optimized code from
TVM/Ansor[18] (state-of-the-art auto-tuning framework). The in-
put tensor data layout used for all experiments was NCHW.

The total number of configurations that remain in the design
space after the analytical-modeling based pruning is shown in Table
3. We note that even the full space is only of the same order as the
number of trials used with TVM/Ansor, but this can be very signifi-
cantly pruned via use of a performance model, described in Section 4.
We compare the best GEMM algorithm used by cuDNN, includ-

256

PACT °22, October 8-12, 2022, Chicago, IL, USA

Yufan Xu, Qiwei Yuan, Erik Curtis Barton, Rui Li, P. Sadayappan, and Aravind Sukumaran-Rajam

Table 2: Configurations of conv2d operators in DefoNet (Left), ResNet-18 (Middle) and Yolo-9000 (Right); K: # output channels;
X,Y: output image width and height; C: #input channels; Fy, , kernel size; batch size = 1; kernel stride = 1/2 (2 if marked with *

after kernel name, 1 otherwise)

Thread Block

Legend:
8 Warp

RIXT X W,

OUTPUT

E Thread Block

Legend: Warp

, : &
V77 777 ¥
- [,]
' ROV, | [x]
. | [x]

X+F -1

Y+F -1
y

INPUT

X+F -1

—‘ YHF -1

INPUT

OUTPUT

Figure 2: RS Kernel mapping in a), S Kernel mapping in b)

Table 3: Total Configurations in the Pruned Search Space

Layer | # Config. | Layer | # Config.
Defo1 842 yolo12 321
Defo2 2494 yolo18 52
Defo3 2300 resl* 423
Defo4 708 res2 2429
Defo5 708 res4* 1398
Defo6 708 res6 2161
yolo0 368 res7* 876
yolo2 321 res9 1017
yolo4 1387 res10® 150
yolo8 802 res12* 159

ing IMPLICIT_GEMM, GEMM, IMPLICIT_PRECOMP_GEMM 2.

2cuDNN’s Winograd implementation is faster in some cases, but we excluded those
in the data presented here, so that all compared codes execute the same number of
arithmetic operations. However, for completeness, performance data from cuDNN’s
Winograd implementation is also provided at the end of this section.

Layer | K C XY | Fxy
Layer | K C XY Fx,y Layer | K C XY Fx’y R1* 64 3 224 | 7
D1 32 3 108 | 3 YO0 32 3 544 | 3 R2 64 | 64 56 3
D2 32 32 108 | 3 Y2 64 32 272 | 3 R4* 128 | 64 56 3
D3 64 32 54 |3 Y4 128 64 136 | 3 R6 128 | 128 | 28 3
D4 64 64 54 |3 Y8 256 128 | 68 3 R7* 256 | 128 | 28 3
D5 128 | 64 27 3 Y12 512 256 | 34 |3 R9 256 | 256 | 14 3
D6 128 | 128 | 27 3 Y18 1024 | 512 | 17 3 R10* | 512 | 512 | 14 3

R12 512 | 512 | 7 3

For collecting TVM/Ansor’s performance, we allowed the auto-
scheduler to explore 2000 trials and used the best version found for
each CNN benchmark.

The experiments were carried out on two Nvidia GPU systems:
(i) Nvidia 2080 Ti GPU hosted on an AMD Ryzen Threadripper
3990X 64-Core CPU running Ubuntu 20.04, and (ii) Nvidia V100
GPU hosted on an Intel(R) Xeon(R) CPU E5-2680 v4 26 cores CPU
running CentOS 7.8.2003. These machines represent different GPU
generations (Turing and Volta) and use cases (non-enterprise and
enterprise). The Nvidia 2080 Ti GPU has a peak performance of
14.2 Tflops for FP32 computation[10] and the V100 GPU has a 15.7
Tflops peak performance for FP32 computation[9]. We compiled our
kernel, and the kernel generated by TVM/Ansor by using GCC 9.3
and NVCC 11.3 with flags "-O3 -arch=sm_xx -res-usage -lineinfo".
The ‘-arch’ parameter was set based on the machine architecture.
We used sm_75 for the 2080Ti and sm_70 for the V100.

Table 4: Geometric mean of speed-up of CNNOpt over cuDNN
and TVM/Ansor for conv2d layers in DefoNet, Resnet and
Yolo

[V100] DefoNet | ResNet | Yolo

vs cuDNN 1.89% 2.76X 1.08%
vs TVM/Ansor 1.41X 1.96x | 1.48%
[2080Ti] DefoNet | ResNet | Yolo

vs cuDNN 1.61x 2.32x | 1.21x
vs TVM/Ansor 1.12% 1.42x | 1.18%

For each benchmark, Nvidia Nsight(ncu)[11] was used for mea-
surement of kernel execution time ncu —target-processes all -metrics
gpu__time_duration —csv [executable]). Figure 3 compares the
achieved speedup of the code generated by CNNOpt and cuDNN
over the optimized code generated by TVM/Ansor. We also mark
the absolute performance in teraflops (TFLOPS) for Ansor’s best
configuration as a reference (to improve readability, we do not also
mark the absolute TFLOPs performance for CNNOpt and cuDNN
in the figure). It may be seen that CNNOpt often achieves much
higher performance than cuDNN and considerable speedup over
TVM/Ansor on many of the benchmarks. The geometric means
of speed-up across the benchmarks from the three networks are
summarized in Table 4.

For completeness, we also include performance data for cuDNN
using the Winograd algorithm for CNN instead of the standard
algorithm. Table 5 lists the ratio of execution time of the CNNOpt

257

Effective Performance Modeling and Domain-Specific Compiler Optimization of CNNs for GPUs

mmm CNNOpt %z cuDNN 25 Ansor

PACT °22, October 8-12, 2022, Chicago, IL, USA

mmm CNNOpt % cuDNN 25 Ansor

g
o

el
O

85z
vs'E

%
&

28R 12's
%
&

o
w
XXX
3
RS
K
6% %% % %%

%

%

25
Matoretet
R

%

%

Speedup (relative to Ansor)
-
o
&

>
%
o5

N
P
2525
%
2

o
o

Speedup (relative to Ansor)

N
0

e 2 = N
n o u o

o
o

vz'E
8Lz

B

o
2388
LB

oy
RRRARRRS

2

X2

%

X
X
%2
X

XX
3

%

b0t
S

RO

%0

_25 4
< 5
u o
£20 33
S -]
o o
215 2
e g g g : ; 82
<10 % B 2 55 & £
= %% s & 2 ;
5 171 A8 s :
e N § - 3
3 2 3 23 R = 82 g 5
? o0 A 2 = A o , Z ; %: _
. Res1* Res2 Res4* Res6 Res7* Res9 Res10* Res12 Res1* Res2 Res4* Res6 Res7* Res9 Res10* Res12
2.0 2.0
= =
o o
2 2
2 2
§ 1.5 § 1.5
o 3 V
gL 3 gL 888 = . = 335 B
£ Poes £ / R /'N. / o] / %% /2‘.:.
a / - / 22 //3:3:5: % 558 %:5:3: /:5:;:
205 / & 205 / 2 /4':;. / 225 /':.;:: / 825
@ / e @ 0% / sl / o / % / K%
4 / 5 4 / S / 5 / o / % / 5
o0 % o0 /%:25: _ i i i

Yolo12 Yolo18

Yolo12 Yolo18

<
=X
o
N
<
=X
[
S
<
=X
S
&

Figure 3: Speedup of CNNOpt (red) and cuDNN (green) relative to Ansor (brown), for DefoNet, Resnet-18 and Yolo-9000, on
2080Ti(Left) and V100 (Right); convolutions with Stride 2 are marked with *

kernel and cuDNN’s winograd kernel, where applicable (i.e., ex-
cluding the stride-2 kernels where the Winograd algorithm is not
appropriate). For some of the DNN layers, the cuDNN winograd
algorithm achieves better performance than CNNOpt (values larger
than 1). However, for the majority of stages, CNNOpt outperforms
the Winograd algorithm. We note that our methodology can also
be applied to optimize the Winograd algorithm, but it is beyond
the scope of this paper.

Table 5: Relative performance of cuDNN winograd convolu-
tion against CNNOpt. CNNOpt is the performance baseline
(1.0) in the table (the cuDNN Winograd algorithm does not
support any stride 2 problem sizes).

Layer | 2080 | v100 || Layer | 2080 | v100
Defol | 0.265 | 0.182 || yolo12 | 1.237 | 1.321
Defo2 | 0.764 | 0.521 || yolo18 | 0.659 | 0.721
Defo3 | 0.663 | 0.417 || res1* | N/A | N/A
Defo4 | 1.509 | 1.359 res2 1.508 | 1.408
Defo5 | 0.617 | 0.382 || res4”™ | N/A | N/A
Defo6 | 0.726 | 0.479 res6 0.689 | 0.469
yolo0 | 0.602 | 0.642 || res7* | N/A | N/A
yolo2 | 1.635 | 1.624 res9 0.622 | 0.421
yolo4 | 1.698 | 1.736 || res10* | N/A | N/A
yolo8 | 1.606 | 1.538 || resl12* | 0.428 | 0.389

3.4 Profiling with Hardware Counters

In this section, we present experimental data collected from hard-
ware counters, seeking to understand the factors contributing to
improved performance of the best CNNOpt kernel over the best

258

Table 6: Pearson correlation coefficient between profiled met-
rics and execution time

Profiling Metric CNNOpt Ansor
2080 v100 2080 v100
SharedMem Transactions | 0.920 | 0.863 || 0.982 | 0.978
GlobalMem Transactions 0.623 | 0.583 || 0.524 | 0.422
Achieved Occupancy -0.185 | 0.396 || 0.174 | 0.369
L1 miss-count 0.640 | 0.543 || 0.714 | 0.162
L2 miss-count 0.480 | 0.323 0.366 | 0.387

Ansor/TVM kernel for each benchmark. We used the Nvidia Nsight-
Compute profiler to collect various metrics for all benchmarks on
both target GPU platforms, for the CNNOpt kernel as well as the ker-
nel code generated by Ansor (the best code versions in both cases).
The profiled metrics included: L1 miss-count, L2 miss-count, global-
memory transactions, shared-memory transactions and achieved
occupancy. We evaluated the Pearson correlation coefficient for
each of the measured metrics against the kernel execution time. As
seen in Table 6, across both machines and both systems (CNNOpt
and Ansor), there was a consistent and very strong positive corre-
lation between execution time and the number of shared-memory
transactions: 0.92, 0.863 for CNNOpt and 0.982, 0.978 for Ansor,
on the 2080Ti and V100, respectively. Figure 4 plots the shared-
memory transaction count versus kernel execution time across all
the benchmarks, for CNNOpt and Ansor, for both devices. Our
kernels generally incur fewer transactions between shared mem-
ory and registers, which appears to be the hardware metric most
correlated with execution time. Table 7 lists the ratio of execution
time of the CNNOpt kernel and Ansor kernel as well as the ratio of

PACT °22, October 8-12, 2022, Chicago, IL, USA

Table 7: Ratio of execution times and shared-memory trans-
action counts between CNNOpt and Ansor

2080Ti V100
Layer | TimeRatio | SM ratio | TimeRatio | SM ratio
R1* 1.06 1.08 0.92 0.41
R2 0.90 0.29 0.86 0.67
R4* 0.78 0.54 0.87 1.00
R6 0.70 0.29 0.73 0.56
R7* 0.68 0.29 0.64 0.31
R9 0.58 0.19 0.51 0.26
R10* 0.50 0.33 0.56 0.28
R12 0.69 0.46 0.70 0.29
YO 1.04 0.86 1.14 1.07
Y2 0.93 0.52 1.04 0.88
Y4 0.98 0.40 0.80 0.94
Y8 0.87 0.68 1.05 0.86
Y12 0.84 0.93 0.94 1.69
Y18 0.66 0.16 0.73 0.38
D1 0.75 1.43 0.78 1.52
D2 0.91 0.84 0.99 0.94
D3 0.87 0.66 0.82 1.08
D4 0.78 0.39 0.87 0.54
D5 0.87 0.23 0.71 0.42
D6 0.85 0.81 0.65 0.76

measured shared memory transactions for the corresponding ker-
nels. Except for some outliers, the CNNOpt kernel achieves a lower
volume of shared-memory transactions than the kernel generated
by Ansor.

4 PERFORMANCE MODELING FOR RAPID
DESIGN SPACE EXPLORATION

In some usage scenarios, the time taken to generate the optimized
code is a significant factor and it is desirable to reduce it from
the many hours it takes to optimize all stages of a DNN pipeline
using TVM/Ansor. In this section we develop a performance mod-
eling approach for scenarios where the code optimization and code
generation time are a concern. Our solution is to build an offline
regression model that is trained with experimentally measured
data for a number of CNN problem sizes and tiling configurations.
During the online phase, where the actual CNN tensor sizes are
known, the pre-trained performance model is rapidly queried to
estimate the performance of each candidate configuration, which
only takes a few seconds to execute in total. The Top-n candidates
with the lowest predicted execution times are compiled and exe-
cuted to determine the best candidate. This process is significantly
faster than empirically assessing all candidate configurations, and
as we show later in this section via experimental evaluation on all
the benchmarks, the number of trials needed to achieve very high
performance is very low.

4.1 Analytical Metrics in ML Performance
Modeling

As mentioned in Section 3, the tile sizes affect several factors, such
as data reuse, resource usage, concurrency, etc., and thus influence

259

Yufan Xu, Qiwei Yuan, Erik Curtis Barton, Rui Li, P. Sadayappan, and Aravind Sukumaran-Rajam

performance. A pure data movement-based analytical model is
insufficient as it ignores interaction between many such factors,
reducing its accuracy in predicting the best configurations. On the
other hand, machine learning can capture the interaction between
most factors that affect performance. However, a black box ML
model based on standard features like the problem extents and tile
sizes may not be able to capture aspects with complex relationships
to input features such as data movement, occupancy, or the tail
effect from waves. Hence, our approach relies on using an ML-
Analytical hybrid model. The analytical model is used to estate data
movement and occupancy, which are then included as additional
features to train an ML model that captures the complex interaction
between different features that affect performance.

Figure 5 provides a summary of the workflow for the perfor-
mance modeling approach used with CNNOpt.

TVM/Ansor[18] uses an evolutional machine learning algorithm
to generate code. The advantage of this approach is that it can
find a reasonably good configuration since the search is done on
a specific problem after evaluating some configurations. However,
this approach has two main disadvantages (i) Portability — the model
is built dynamically for a specific problem size and hence cannot
be reused for other problem sizes in the future (ii) Code generation
time - the internal auto-tuning/auto-scheduler has to empirically
evaluate a large number of candidates (typically in 100’s to 1000’s)
and hence is expensive. Hence, for a convolutional neural network
with several distinct convolution layers, TVM/Ansor requires many
hours to generate optimized kernel code.

Compared to Ansor, CNNOpt can perform a very fast prediction
(in a few seconds) of the estimated execution time of all pruned
configurations (Table 3) and can generate high-performance kernel
code for the best predicted configurations in a short time. The left
portion of the workflow in Figure 5 represents the offline training
part (training set generation, calculating various input features,
including analytical features, and training the model). The right part
of the figure depicts the online inference for generating optimized
kernel code for given CNN problem sizes. The details are explained
below.

CNNOpt Model Construction: As mentioned earlier, our ML
modeling approach augmented by analytical metrics can be sum-
marized as two steps: 1) Use the analytical model to estimate data
movement at different memory levels and other factors such as
occupancy and number of waves; 2) Feed the input features (includ-
ing analytical features) to a Random Forest Regressor in addition to
the problem sizes and corresponding tile sizes. We choose Random
Forest Regression method provided by the scikit-learn library[12]
to build our offline model. The random forest methods only require
a few samples for training and have relatively low training and
prediction time.

Data Collection and Feature Selection:

1) The problem sizes used for training the offline model were
generated as follows: (i) X and Y were varied randomly in the range
3 to 1024 such that the maximum prime factor was smaller than
or equal to 17; (ii) K was randomly selected in the range from
2% to 219; (iii) C was randomly selected from range 2* to 21° and
3 that is a common input channel size for the first convolution
layer in most of well-known CNN architectures; and (iv) Kernel/
Filter shape is limited to 3, 5, and 7. These five values form the

Effective Performance Modeling and Domain-Specific Compiler Optimization of CNNs for GPUs

x107 x107

Pearson's r: 0.982) \'Pearson's r 0,920]

Shared Memory Transactions
S
Shared Memory Transactions

0 100 200 300
Execution time(us)

400 500 0 50 100 150 200 250 300 350

Execution time(us)

(a) Ansor, 2080Ti (b) CNNOpt, 2080Ti

Shared Memory Transactions

w
o

o

0.0

PACT °22, October 8-12, 2022, Chicago, IL, USA

x107 x107

o

\:Pearson's r 0.978} [Pearson's r O.SGBJ

e o = = =
o o N &

Shared Memory Transactions
°
S

°
B

0 100 200 300 400
Execution time(us)

500 0 50 100 150 200 250

Execution time(us)

300

(c) Ansor, V100 (d) CNNOpt, V100

Figure 4: Correlation between Share-memory transactions and executiio time; 2080Ti (a and b) and V100 (c and d)

Offline Training |- - - oo . - ____ Online Testing

Generate
Training
Samples

Problem Sizes from
Test CNN Networks

Compute
Analytical
Features

Training

Dataset

Compute
Analytical
Features

Measure
Execution
Time

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 {Problem Size, Tile Sizes,
H Analytical Features}
1
1
1
1
1
1
1
1
1
1
1
1
1

as Test Features

Offline Model

Predict TopN
Candidates and
Generate Code

{Problem Size, Tile Sizes,
Analytical Features}
as Training Features

Model
Training

Execution Time
as Training Label

TopN Kernel
Code

Compile and
Execute
Candidates

Select Best
Code

Figure 5: Workflow of CNNOpt. Rectangular nodes represent
data and oval nodes processes.

first set of input features, called {Problem Size}, used for training.
We developed two models separately for stride one and stride two
kernels. 2) The second group of training features are tile sizes
in different tiling levels (described in the previous section 3). We
consider all factors as possible tile sizes for each dimension, and
we currently do not consider partial tile solutions. The tile-size
selection search space consists of the cross-product of tile sizes
corresponding to different dimensions. The tile-size combinations
that do not obey the hardware resource capacity constraints are
filtered out. We use {Tile Sizes} to denote this group. 3) The last group
of the training features is {Analytical Features] calculated by the
analytical model. The analytical features we chose for training the
hybrid model can be classified as follows: i) data movement-related:
we estimate memory transactions at different memory levels(global-
to-shared memory and shared-to-register); ii) concurrency related:
we estimate occupancy based on resource usage of registers, shared
memory and thread block shape; the number of concurrent thread
blocks iii) SMs utilization related: We calculate the number of thread
block waves to estimate the tail effect load imbalance. These three
groups of features collectively form the training features, and the

260

ground truth label Time for each training sample is the actual
execution time. We measure the running time on target GPUs for
each training sample.
A sample in the training dataset can be described as:

4)
Evaluation Metric: We use Loss of Performance(LoP) as the met-
ric to compare a model’s performance. Let Tpred represent the
execution time of the best version selected by a model. Let Tbest
represent the actual best configuration from exhaustive exploration
of all alternatives. LoP is computed as:
Tpred — Thest s

Tbest ©)
Model Prediction: The right part of Figure 5 depicts CNNOpt
online performance prediction. Once the offline model is built,
for any query, we enumerate all possible tile sizes that do not
violate capacity constraints, calculate the corresponding analytic
features to form a test dataset. CNNOpt compiles and executes
the Top-n configurations and selects the version achieving th ebest
performance (the lowest execution time).

(ProblemSize, TileSizes, AnalyticFeatures) — Time

LoP =

4.2 Comparison with TVM/Ansor

We compare the effectiveness of CNNOpt in producing a fast GPU
kernel against TVM/Ansor. Figure 6 shows the results for CNNOpt
Top-n prediction and Ansor. We use Ansor’s best performance as the
baseline, highlighted as a horizontal black dashed line at a value of
1.0 in the figures. We report on the best performance from running
Ansor with 100 trials and 500 trials and the best performance from
executing the top-10 and top-30 from the model predictions. We
also include CNNOpt-best, the best among all configurations (the
CNNOpt performance reported in Sec. 3. It may be seen that for
the vast majority of the cases, just 10 compile/executes (the top-
10 data) with CNNOpt achieves better performance than the best
result from 2000 trials from TVM/Ansor. In contrast, with a hundred
trials of Ansor (red bars), the performance achieved often has very
significant performance loss.

The Table 8 shows the number of trials that Ansor and CNNOpt
require to attain 95% of the performance of the best kernel found
with exhaustive search. We set the 95% performance(5% LOP) thresh-
old over the highest performance shown in section 3.3 that both
Ansor and CNNOpt achieve with exhaustive searching (2000 trials

PACT °22, October 8-12, 2022, Chicago, IL, USA

Bmm Ansor-100 %z Ansor-500 22 CNNOpt-topl0 == CNNOpt-top30 * CNNOpt

g
o

Yufan Xu, Qiwei Yuan, Erik Curtis Barton, Rui Li, P. Sadayappan, and Aravind Sukumaran-Rajam

mmm Ansor-100 %z Ansor-500 @2 CNNOpt-topl0 ®=## CNNOpt-top30 * CNNOpt

g
=3

el
n

Speedup (relative to Ansor)
o =
w o

o
o

~N
=

Speedup (relative to Ansor)
-
o

=
n

d
«n

o
o

Defol Defo2 Defo3 Defod4 Defo5 Defo6

=
v

XXX

N
R0

O

Speedup (relative to Ansor)
=} =
n =)
|
DD

% o
Res10 Res12

o
b
M

;1
»
o
2
o
o
)
P
o
2
o

Res1* Res2 esd*

Speedup (relative to Ansor)
-
o

DO

N

XXX
XXXAXXD

XX

%
N

0.5

NN
D

)

RXXXXX

SRR

MMM

R

e
o
=]

=
N
o

H

z

<

2 &

y1.00 P - ,‘ :

8075 A % S

el e A .

soso| B s s

3 = g;:z %:3: %

gos) B8 = = %

T WA WEE: WEE ik
: YoloO Yolo2 Yolo4 Yolo12

Speedup (relative to Ansor)

0.0 Rl* Res2 Res4* Res6 R7* Res9 R10 Res12
1.50
1.25
1.00 A 0 -
Z A
0.75 %;:' %:31
s i
0.50 s o
s e
0.25 %:. %:,:
2 3%
7 8

Yolo2 Yolo4 Yolo18

Figure 6: Speedup relative to Ansor-best (1.0), for Ansor with 100 and 500 trials, and CNNOpt Top-10/30/best; on 2080Ti (Left)

and V100 (Right)

in case of Ansor). The smaller number of trials means shorter explo-
ration time to find a fast kernel. Ansor takes on average over 600
trials to achieve a performance of 95% of its best kernel. In contrast,
CNNOpt takes far fewer trials on both GPUs devices. In addition,
we also compare CNNOpt with Ansor in the number of exploration
trials to find the best configuration. Similar to the results for the
95% threshold, CNNOpt needs far fewer trials to produce the best
kernel code in Table 8.

4.3 Effectiveness of Hybrid Modeling: Ablation
Study

In this section, we perform an ablation study on the hybrid-ML
modeling used by CNNOpt by asking whether a purely analyti-
cal modeling or a black-box ML model can achieve comparable
effectiveness.

In assessing the relative effectiveness of different modeling ap-
proaches, we use loss-of-performance (LOP) in comparison to the
best code version as the assessment criterion. We do so instead
of metrics such as RMSE (Root Mean Square Error) because the
model-predicted time is merely used to select a small subset of code
versions for compiling/execution from a large design space. Thus,
the ability to correctly discriminate between fast code versions and
slow code versions is much more important than the closeness of
the predicted times and the actual execution times of code versions.
Further, even with respect to discriminatory ability, the accuracy of
rank ordering among the fast code versions is much more important
than the accuracy of rank ordering between slow versions, as long
as slow code versions are consistently ranked worse than fast code
versions.

Analytical Modeling: As explained in Section 3, data movement is
a key factor that affects performance. Either the data movement be-
tween global memory and shared-memory or that between shared-
memory and registers could be the bottleneck. We evaluated a
pure analytical model seeking the configuration that minimizes the
bandwidth-scaled data movement in the two levels of the memory
hierarchy in GPUs. The data volume at each level is estimated using
the analytical model described in Section 3, which is based on prob-
lem sizes and data reuse factors. As mentioned earlier, counting
data movement in terms of individual elements will not reflect the
actual memory traffic; hence we model the data movement in terms
of the number of memory transactions. In our design, the output
tensor has a very high degree of reuse. Hence the memory traffic
from the output tensor is low and we ignore it in our analysis. The
transferred data volume from global memory to shared memory for
the input tensor is ceil (WX + Fx — 1) x (WY + Fy — 1) /32); for the
kernel it is calculated as ceil(Wk X Fx X Fy/32). The traffic from
shared-memory to registers for the input tensor is calculated as
((RY+Fy—1) X (R* + Fx — 1)) X numWarp X numTB x C and the
kernel is calculated as (Fx X Fy X Rk) X numWarp X numTB x C,
where numTB = (Bx X By X By), numWarp = (Wy X Wy X Wg).
Tile-sizes at different memory levels were chosen as factors of the
problem size which did not violate capacity constraints. We rank-
ordered all possible configuration according to the estimated data
movement, and the Top — n configurations are evaluated to select
the best version.

ML Modeling: In order to develop the machine learning model, we
generated a training dataset for the same set of problem sizes as de-
scribed earlier for the hybrid model. The training dataset was thus
identical to the dataset used in CNNOpt hybrid modeling except

261

Effective Performance Modeling and Domain-Specific Compiler Optimization of CNNs for GPUs

that analytic features were excluded. We ensured that the training
dataset did not contain any problem size used in the final evalua-
tion. We compared multiple ML models such as LinearRegression,
DecisionTreeRegressor, RandomForestRegressor, AdaBoostRegres-
sor, and GradientBoostingRegressor from scikit-learn[12] and we
selected the RandomForestRegressor to build a black-box ML model
since it achieved the best overall accuracy in the validation set. The
trained ML model was then used for the test benchmarks from real
CNN networks 2 by enumerating all possible tile sizes that did not
violate capacity constraints to predict execution time. The top 30
candidates were selected for actual execution on the target GPU
from these predictions, and the best one was chosen.
Experimental Results: Table 9 compares the performance of the
three models where the Top—n (n = 30) configurations are executed
to find the best configuration. 1) The LoP of the Analytical Model
(defined in equation 5) is the highest among all methods in most
test cases and shows the ineffectiveness of a pure Analytical Model,
as dynamic run-time factors such as occupancy, thread idling, tail
effects, and synchronizations are ignored. The complex interplay
between these factors is difficult to capture using an analytical
model. 2) The performance of black-box machine learning method
excels over pure Analytical Modeling and shows that the ML mod-
eling can capture more complicated relationships between various
factors and their impact on performance. However, in a few cases,
the ML models have the worst LoP, reflecting a lack of robustness
across the benchmarks. 3) CNNOpt achieves the best prediction
results and the LoP of Top — 30 is less than 1% on average. Note that
our approach is highly scalable and can be employed on very deep
neural networks. The optimization of each layer is independent
and thus does not depend on the depth of the network. In addition,
many modern networks have multiple layers with the same prob-
lem sizes; hence the solution to a single layer can be reused across
many layers.

5 RELATED WORK

TVM utilizes a scheduling language and includes a template-guided
search framework AutoTVM[2]. FlexTensor[19] claims it optimizes
tensor computation programs without human interference, allow-
ing programmers to only work on high-level programming abstrac-
tion without considering the hardware platform details. But, Flex-
Tensor limits itself to explore a very small schedule space. Ansor[18]
is based on auto-scheduling, which avoids using predefined tem-
plates as AutoTVM, which also achieves better performance than
AutoTVM and FlexTensor. CNN optimization on CPU by Li et al[8]
achieves better performance than auto-tuning and library. No previ-
ous performance-model-driven approach to GPU CNN optimization
has been demonstrated to achieve competitive performance to ei-
ther manual library development or auto-tuning.

The polyhedral compilation model formulates the optimization
of schedules for affine computations as an integer linear program-
ming (ILP) problem. It finds an affine loop transformation that
minimizes the data reuse distance between dependent statements.
Tiramisu[1] and Tensor-Comprehensions[15] are two polyhedral
compilers that also target the deep learning domain. Tiramisu pro-
vides a scheduling language, but relies on manual scheduling. Ten-
sor Comprehensions can search for GPU code automatically, but it

PACT °22, October 8-12, 2022, Chicago, IL, USA

Table 8: Number of trials to achieve 95% and 100% of best
performance, for Ansor and CNNOpt, on 2080Ti and V100.

95% 100%
Ansor CNNOpt Ansor CNNOpt
v100 | 2080 | v100 | 2080 | v100 | 2080 | v100 | 2080

R1* | 130 1686 | 1 1 1025 | 1793 | 6 9
R2 833 513 | 22 1 2001 | 1922 | 115 10
R4* | 385 199 | 8 1 1665 | 454 11 37
R6 897 1410 | 7 1 1153 | 1922 | 29 10
R7 706 130 | 5 1 1475 | 139 20
R9 | 513 203 1 1 897 1857
R10 | 150 1164 | 1 4 2004 | 1412 | 1 4
R13 | 321 1606 | 5 1 1345 | 1611 | 7 5
YO 836 312 28 12 1217 | 1555 | 29 19
Y2 | 451 420 | 2 1 1409 | 1820 | 2 64
Y4 | 449 259 1 48 1985 | 1541 | 3 183
Y8 321 833 4 1 1601 | 1601 | 11 1
Y12 | 1089 | 641 4 1 1601 | 1994
Y18 | 202 653 | 3 3 1859 | 2002 | 8
D1 | 961 705 1 2 1474 | 2003 | 1 3
D2 | 1025 | 577 15 2 1025 | 1409 | 584 104
D3 | 1537 | 470 |3 9 1601 | 1224 | 3 9
D4 | 328 1537 | 3 1 2002 | 1537 | 332 28
D5 | 641 330 1 6 641 1025 | 1 9
D6 | 328 |281 |1 4 1730 | 2005 | 2 9
avg | 606 697 | 6 6 1486 | 1542 | 59 26

Table 9: LOP comparison: Black-box ML, Analytical, and Hy-
brid Modeling, on 2080Ti and V100

ML Analytical CNNOpt
2080Ti | v100 | 2080Ti | v100 2080Ti | v100
R1* | 0.1% 11.6% | 0% 2.4% 0% 0%
R2 | 0.5% 10.5% | 73.6% | 81.5% | 0% 7.8%
R4™ | 2.8% 10.3% | 10.1% | 27.5% | 2.1% 0%
R6 | 0% 2.5% 105.5% | 243.6% | 0% 5.1%
R7 | 0% 53% | 1.1% 1.8% 0% 0%
R9 | 0% 0% 943% | 244.4% | 0% 0%
R10 | 147.7% | 2.8% 152% | 47.2% | 0% 0%
R12 | 0% 0% 2.1% 5.4% 0% 0%
YO 3.5% 0% 18.2% | 9.5% 0.2% 0%
Y2 | 0% 0% 19.4% | 183% | 0% 0%
Y4 | 0% 0% 13.0% 5.8% 3.7% 0%
Y8 | 0% 0% 0.5% 7.9% 0% 0%
Y12 | 0% 0% 0% 1.6% 0% 0%
Y18 | 0% 0% 0% 0% 0% 0%
D1 | 0% 0% 0% 0% 0% 0%
D2 | 1.7% 5.3% 18.5% 15.8% | 3.2% 2.6%
D3 | 9.1% 39% | 30.5% | 31.9% | 0% 0%
D4 | 7.3% 78% | 51.1% | 55.1% | 0.6% 2.6%
D5 | 0% 0% 27.6% 50.0% | 0% 0%
D6 | 0% 0% 18.8% | 6.3% 0% 0%

PACT °22, October 8-12, 2022, Chicago, IL, USA

cannot outperform AutoTVM/Ansor. This is because of the lack of
certain optimizations and the inaccurate implicit cost model in the
polyhedral formulation.

CUTLASS[7] is a collection of CUDA C++ template abstractions
for implementing high-performance GEMM and related compu-
tations at all levels and scales within CUDA. CUTLASS does not
include any tile-size optimization mechanism or a modeling ap-
proach. Our modeling approach can be extended for tensor cores
as planned future work.

6 CONCLUSION

This paper has developed an effective domain-specific code op-
timization approach for synthesizing high-performance GPU im-
plementations for the important CNN kernels that dominate ex-
ecution time of deep learning pipelines for image analysis. The
developed approach is applicable both to the off-line context where
code synthesis time is not a concern, as well as scenarios where
code optimization time is a constraint. Improved performance over
both state-of-the-art cuDNN vendor library and the state-of-the-art
TVM/Ansor auto-tuning framework were demonstrated. Signifi-
cant reduction of code optimization time over TVM/Ansor was also
demonstrated.

ACKNOWLEDGMENTS

We thank the reviewers for their valuable feedback that helped
us improve the paper. The support and resources from the Center
for High Performance Computing at the University of Utah are
gratefully acknowledged. We are also very thankful for the use of
the RI2 compute cluster in the CSE Department at the Ohio State
University. Work at the University of Utah was supported in part
by the National Science Foundation through awards 2018016 and
2112606.

REFERENCES

[1] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo, Ab-
durrahman Akkas, Yunming Zhang, Patricia Suriana, Shoaib Kamil, and Saman
Amarasinghe. 2019. Tiramisu: A polyhedral compiler for expressing fast and
portable code. In 2019 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO). IEEE, 193-205.

Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. 2018. TVM: An Automated End-to-End Optimizing
Compiler for Deep Learning. In Proc. USENIX Symposium on Operating Systems
Design and Implementation (OSDI).

s

263

Yufan Xu, Qiwei Yuan, Erik Curtis Barton, Rui Li, P. Sadayappan, and Aravind Sukumaran-Rajam

[3] Tiangi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. Learning to Optimize
Tensor Programs. Advances in Neural Information Processing Systems 31 (2018),
3389-3400.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John
Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cudnn: Efficient primitives
for deep learning. arXiv preprint arXiv:1410.0759 (2014).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity mappings
in deep residual networks. In European conference on computer vision. Springer,
630-645.

Andrew Kerr. 2020. Nvidia CUTLASS CUDA templates for Linear Algebra.
https://github.com/NVIDIA/cutlass.

Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P Sadayappan.
2021. Analytical characterization and design space exploration for optimization
of CNNs. In Proceedings of the 26th ACM International Conference on Architectural

Support for Pm{/rammin Languages and Operating Systems. 928-942.
Nvidia. 2017. NVIDIA TESLA 6100 GPU ARCHITECTURE. https://images.nvidia.

com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.

Nvidia. 2017. NVIDIA TURING GPU ARCHITECTURE. https://images.nvidia.
com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing- Architecture-Whitepaper.pdf.

Nvidia. 2022. NVIDIA Nsight CLL https://docs.nvidia.com/nsight-compute/
NsightComputeCli/index.html.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779-788.

Joseph Redmon and Ali Farhadi. 2017. YOLO9000: better, faster, stronger. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
7263-7271.

Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. 2018. Tensor comprehensions: Framework-agnostic high-performance
machine learning abstractions. arXiv preprint arXiv:1802.04730 (2018).

Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, Jose Ignacio Gomez, Christian
Tenllado, and Francky Catthoor. 2013. Polyhedral parallel code generation for
CUDA. ACM Transactions on Architecture and Code Optimization (TACO) 9, 4
(2013), 1-23.

Zichen Zhang, Sami Khanal, Amy Raudenbush, Kelley Tilmon, and Christopher
Stewart. 2022. Assessing the efficacy of machine learning techniques to char-
acterize soybean defoliation from unmanned aerial vehicles. Computers and
Electronics in Agriculture 193 (2022), 106682.

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer
Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. 2020. An-
sor: Generating high-performance tensor programs for deep learning. In 14th
{USENIX} Symposium on Operating Systems Design and Implementation ({ OSDI}
20). 863-879.

Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. 2020. Flexten-
sor: An automatic schedule exploration and optimization framework for tensor
computation on heterogeneous system. In Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems. 859-873.

[

[10

[11

[12

[14

[15

[16

=
=

(18

[19

https://github.com/NVIDIA/cutlass
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html
https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.html

Effective Performance Modeling and Domain-Specific Compiler Optimization of CNNs for GPUs

A ARTIFACT APPENDIX
A.1 Abstract

The artifact contains the scripts and data required to reproduce the
experimental results in the PACT 2022 paper titled “Effective Per-
formance Modeling and Domain-Specific Compiler Optimization
of CNNs for GPUs”. The git repository contains:

The CNNOpt, cuDNN, and Ansor generated source code;
The scripts to depict the performance chart in Fig. 3;

The scripts to depict the correlation in Fig. 4;

The scripts to illustrate efficiency and rapidity of analytical
metrics in ML performance modeling in Table 8, 9.

A.2 Artifact check-list (meta-information)

e Program: cuda source code of CNNOpt and corresponding
code generator.

e Compilation: Detailed instructions to compile different
frameworks and scripts to run each framework is provided
below. A copy of these instructions can also be found at the
github repository.

¢ Run-time environment: GCC >=8.5, CUDA 11.3.0, cuDNN
v8.2.0, Conda, Linux platform such as Ubuntu or CentOS.

e Hardware: Nvidia 2080Ti or Nvidia V100.

e Execution: All scripts are explained in the READEME file
and follow the workflow in section A.5.

e Output: The script reports performance chart in Fig. 3, the
execution time and shared memory correlation in Fig. 4, and
the LoP experiment in Table 8, 9

e How much disk space required (approximately)?: > 50
GB.

e How much time is needed to prepare workflow (ap-
proximately)?: Creating conda virtual environment and
install dependency should be less than 5 mins.

e How much time is needed to complete experiments
(approximately)?: Should be less than 1 hour.

e Publicly available?: Yes

A.3 Description

A.3.1 How Delivered . Our artifact is available on a public git
repository:

https://github.com/HPCRL/AE-PACT

264

PACT °22, October 8-12, 2022, Chicago, IL, USA

A.3.2 Hardware Dependencies . Nvidia 2080Ti or Nvidia V100.

A.3.3 Software Dependencies . Conda, CUDA 11.3.0, cuDNN v8.2.0,
scikit-learn, numpy, pandas, six, matplotlib, Linux

A.4 Installation

Clone the repository (recursively):
https://github.com/HPCRL/AE-PACT
See the below file for instructions:

https://github.com/HPCRL/AE-PACT/blob/master/README

A.5 Experiment Workflow

Prepare conda environment:
$ conda create —name pactae python=3.8

$ conda activate pactae
$ conda install numpy pandas six matplotlib

$ pip3 install -U scikit-learn

For Performance Chart:

$ bash gen_profile_duration_log.sh
$ bash bash all_fig.sh

For Execution time and Shared Memory correlation :
$ bash sm-cor-2080.sh > sm-2080.log
$ bash sm-cor-v100.sh > sm-v100.log
$ python SM_correlation.py

For LoP experiments:

$ cd lop-v100/

$ bash run.sh

$ cd lop-2080/

$ bash run.sh

A.6 Evaluation and Expected Result

We expect the performance results to be close to those reported
in the paper (Fig. 3). The results compare the achieved speedup of
the code generated by CNNOpt and cuDNN over the optimized
code generated by TVM/Ansor on Nvidia 2080Ti and V100 machine.
After running scrips in Execution time and Shared Memory cor-
relation, all result figures should be similar with Fig. 4. The LoP
experiment takes around 20-30 min to produce LoP table and domi-
nant time cost is to generate hybrid model and comparison pure ML
model. The printout table shows LoP between Analytical Modeling,
ML Modeling, and CNNOpt Hybrid modeling.

	Abstract
	1 Introduction
	2 Background and Overview of Paper
	3 GPU Kernel Design and Analytical Pruning of Search Space
	3.1 Design Overview
	3.2 Design Details
	3.3 Experimental Evaluation
	3.4 Profiling with Hardware Counters

	4 Performance Modeling for Rapid Design Space Exploration
	4.1 Analytical Metrics in ML Performance Modeling
	4.2 Comparison with TVM/Ansor
	4.3 Effectiveness of Hybrid Modeling: Ablation Study

	5 Related work
	6 Conclusion
	Acknowledgments

	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result

