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Abstract

Camera traps are valuable tools in animal ecology for bio-
diversity monitoring and conservation. However, challenges
like poor generalization to deployment at new unseen loca-
tions limit their practical application. Images are naturally
associated with heterogeneous forms of context possibly in
different modalities. In this work, we leverage the structured
context associated with the camera trap images to improve
out-of-distribution generalization for the task of species iden-
tification in camera traps. For example, a photo of a wild
animal may be associated with information about where and
when it was taken, as well as structured biology knowledge
about the animal species. While typically overlooked by exist-
ing work, bringing back such context offers several potential
benefits for better image understanding, such as address-
ing data scarcity and enhancing generalization. However,
effectively integrating such heterogeneous context into the
visual domain is a challenging problem. To address this,
we propose a novel framework that reformulates species
classification as link prediction in a multimodal knowledge
graph (KG). This framework seamlessly integrates various
forms of multimodal context for visual recognition. We ap-
ply this framework for out-of-distribution species classifica-
tion on the iWildCam2020-WILDS and Snapshot Mountain
Zebra datasets and achieve competitive performance with
state-of-the-art approaches. Furthermore, our framework
successfully incorporates biological taxonomy for improved
generalization and enhances sample efficiency for recogniz-
ing under-represented species.1

1. Introduction
Human activities are increasingly endangering wildlife
species, resulting in a significant global decline in animal
populations [2, 19, 37]. Therefore, accurately identifying

1Website: https://osu-nlp-group.github.io/COSMO/

and tracking wildlife species is vital for preserving ecologi-
cal biodiversity. Camera traps, digital cameras activated by
motion or infrared in natural habitats, have become ecolo-
gists’ preferred data collection tool [23, 44, 64]. However,
manually sifting through the numerous images they capture
is a time-consuming and arduous task for experts. This has
led to the increased use of computer vision techniques for
species recognition [1, 13, 30, 52, 65]. Yet, a challenge has
arisen: many of these models overfit to the backgrounds
of their training images, diminishing their effectiveness on
images from new locations [7, 39]. This underscores the
need for more adaptable species classification models that
perform well across diverse contexts.

Building on this, cognitive science research has demon-
strated the profound influence of contextual information on
human perception and visual recognition processes [4, 5, 45].
Particularly in wildlife monitoring, camera trap images are
replete with crucial contextual data, such as where (i.e., cam-
era location coordinates) and when (i.e., timestamps) a photo
is taken. Furthermore, the structured knowledge of biology
taxonomy (e.g., Open Tree Taxonomy [46]) can also provide
valuable context for understanding the species in camera
trap images. Such context provides important knowledge
that can boost the recognition of visual concepts. For in-
stance, the knowledge that a certain feline image was taken
from a camera trap in Africa significantly reduces the like-
lihood of it representing a tiger. In addition, more robust
associations might be learned with the aid of contextual
information because the context provides invariable knowl-
edge that is unbiased towards variations in the illuminations
or angles of an image. This may help to compensate for
domain shifts in species images resulting from such varia-
tions and potentially lead to better out-of-distribution (OOD)
generalizability [6, 21]. Consequently, the incorporation of
contextual information in species identification presents a
significant problem worthy of investigation.

Nevertheless, contextual information has been under-
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exploited in the literature of image classification; standard
image classification models [24, 57] often disregard the con-
textual information tied to images. This is partly due to
the heterogeneous nature of the context, which makes it
challenging to incorporate contextual information in image
classification using a unified learning framework. Contextual
information in different modalities (e.g., numerical values,
textual descriptions, or structured taxonomies) is usually
represented separately from the image in distinct feature
spaces. The question of effectively combining features from
these different spaces within a unified learning framework
remains unanswered. Existing research typically treats all
the features as additional input to the classifier via feature
vector concatenation [6, 21, 32] or utilizes fusion to obtain
aggregate representations [16, 18]. Despite their simplicity,
such approaches are incapable of capturing complex struc-
tural and semantic relationships between images and various
contextual information. Additionally, these approaches as-
sume a uniform availability of contextual information across
all images, which is often unrealistic in real-world scenar-
ios. As a result, their flexibility is limited, especially when
considering situations where certain images may lack some
contextual details, such as coordinates or timestamps, like in
camera trap photos.

Towards this end, we propose a new learning frame-
work, COSMO (Classification Of Species using Multimodal
cOntext), where we first organize all species images and con-
textual information as a multimodal knowledge graph (KG)
and then reformulate species classification as the standard
link prediction task on the KG. Specifically, we consider
species images, their corresponding labels (which are avail-
able in the training data), and their associated attributes pro-
vided in the context as entities within our KG (see Figure 1
for an example). We represent the relationships between
these entities as edges in our KG (see a more concrete de-
scription of our KG construction in Section 3.2). Our KG
is multimodal since its entities are from different modali-
ties. In this context, species classification can be framed as
a link prediction task, where the objective is to predict the
presence of an edge between an image and its correspond-
ing species label within the KG. This learning framework
enables a unified way to incorporate heterogeneous contex-
tual information for species classification. Each form of
multimodal information is treated as a type of entity, a first-
class citizen of the multimodal KG with its representation
computed using a modality-specific encoder. The learning
process enables the interaction of different modalities in a
joint feature space for robust representation learning. In
addition, COSMO demonstrates greater flexibility by not
assuming uniform availability of all contextual information,
unlike previous methods.

We utilize the popular DistMult [67] model as our back-
bone model for link prediction to instantiate the COSMO

framework. To assess the performance of COSMO, partic-
ularly in OOD generalization, we conduct experiments on
the iWildCam2020-WILDS benchmark [30] and Snapshot
Mountain Zebra [48], which are standard datasets for species
identification in camera trap photos. They contain naturally
occurring wildlife photos associated with metadata. Factors
like variation in illumination, camera pose, and motion blur
pose challenges for robustness and generalization, making
these benchmarks an ideal testbed for assessing our frame-
work’s effectiveness. We further show that COSMO offers a
unified framework to incorporate heterogeneous context that
further improves the performance.

The main contribution of this work is three-fold:
• We propose a novel framework, COSMO, that reformu-

lates species classification as link prediction in a multi-
modal knowledge graph, which provides a unified way to
incorporate heterogeneous forms of contextual informa-
tion associated with images for visual recognition.

• We instantiate this framework for species classification
of wildlife images, including the construction of a novel
multimodal knowledge graph for this problem that inte-
grates temporospatial information and structured biology
knowledge.

• Evaluation on the standard iWildCam2020-WILDS and
Snapshot Mountain Zebra datasets demonstrate that
COSMO achieves competitive performance compared
with standard species classification methods, especially in
improving robustness and OOD generalization.

2. Related Work
Species Recognition in Camera Traps. Deep neural
networks such as CNNs have been successfully deployed for
large-scale recognition of camera trap images [43, 60, 65].
This has paved the way for significant savings in logistics
costs for biodiversity conservation. However, training
such models often requires enormous amounts of data to
perform well. Sadegh Norouzzadeh et al. and Bothmann
et al. propose active learning approaches to mitigate
the sample inefficiency of training species classification
models in such systems. Another challenge arises from
the tendency of these models to overfit to the backgrounds
present in the training images [7, 39], which limits their
deployment to new camera trap locations [60]. Improving
robustness to new locations is a significant research
challenge [8, 61] leading to the curation of datasets like
iWildCam2020-WILDS [30] to test out-of-distribution
(OOD) generalization for such systems. Domain adaptation
approaches in the literature seek to mitigate this issue by
distributionally robust optimization [26, 50] or learning
domain invariant features [59]. In contrast, this work helps
improve the robustness to new camera trap locations by
utilizing a multimodal KG of heterogeneous contexts.
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Figure 1. Overview of our framework COSMO. Left: Our multimodal knowledge graph for camera traps and wildlife. Photos from
camera traps are jointly represented in the KG with contextual information such as time, location, and structured biology taxonomy. The
taxonomy is obtained from Open Tree Taxonomy (OTT) [46] or iNaturalist [25]. Right: In our formulation of species classification as link
prediction, the plausibility score ψ(s, r, o) of each (subject, relation, object) triple is computed using a KGE model (e.g., DistMult), where
the subject, relation, and object are all first embedded into a vector space. Specifically, for our multimodal KG, we represent visual entities
using a ResNet-50 pre-trained on ImageNet and represent numerical entities using an MLP. For categorical entities and relations, we directly
represent them with embedding lookups.

Image Classification with Auxiliary Information. Despite
the ubiquity of contextual metadata, the potential of lever-
aging them for image classification has been largely under-
explored. Previous studies have primarily treated metadata
as additional input features for classifiers [6, 21, 32], rep-
resenting a shallow use that fails to capture the intricate
relationships between metadata and images. Some works
have attempted to model pairwise dependencies between im-
ages using heuristics based on metadata, such as shared tags
on social media [35, 38] or aggregating information from
neighborhood images with similar metadata [28] while dis-
regarding more complex relationships among images, meta-
data, and labels. Metaformer [18] feeds a sequence of image
patches and metadata to a Transformer model for their fusion.
Additionally, these methods assume a uniform availability
of metadata for all images, which is often not the case in
reality due to data scarcity. For instance, the camera trap
location coordinates may not be available in some cases due
to privacy and security reasons. In our work, we do not
assume such uniform availability and build the multimodal
KG using available metadata.

Apart from the metadata, external sources of knowledge
are also used in image classification. For instance, Jayathi-
laka et al. embed each class as a vector based on a hierarchy
derived from WordNet [40]. Alsallakh et al. develop a
class hierarchy-aware CNN for image classification on
ImageNet. Similarly, Bertinetto et al. and Zhang et al.

design hierarchy-aware objectives to incorporate taxonomy
in image representations. BioCLIP [58] verbalizes the
taxonomic hierarchy to train a CLIP-style foundational
model for species classification across plants, animals, and
fungi. Marino et al. represent images as local subgraphs
of Visual Genome [31]. In contrast, COSMO constructs
a global KG with both metadata and external knowledge,
e.g., taxonomy information from Open Tree Taxonomy, and
approaches image classification as link prediction within
the KG. Our novel formulation is flexible in handling data
scarcity of metadata and enables reasoning over diverse
relationships present in the KG.

KG Link Prediction. Most real-world KGs are incomplete.
The task of link prediction or knowledge graph completion
(KGC) tries to infer missing links given the observed
ones. Early approaches for link prediction range from
translation-based models [12, 34] and semantic matching
models [42, 67] to the ones that leverage neural networks
like feedforward neural networks [20], CNNs [17, 41], and
Transformer-based models [15, 53, 68]. These methods use
a parameterized scoring function based on learned entity and
relation embeddings to calculate the plausibility of a particu-
lar triple. However, it could be challenging to fully encode
the rich semantic information of KGs into such shallow
embeddings. To mitigate this, Schlichtkrull et al., Vashishth
et al., Yu et al., Pahuja et al. use graph neural networks



(GNNs) to encode the rich neighborhood context of entities
for link prediction. In our framework, we employ a global
multimodal KG, which consists of biological taxonomy
and metadata, as the context to enhance OOD generalization.

Multimodal KG Reasoning. Multimodal KGs extend tradi-
tional KGs by including entities of different modalities such
as categorical data, images, numerical data, etc. KBLRN
[22] is a pioneering work in multimodal KG reasoning that
uses extra information in the form of relational and numeri-
cal features for multimodal KG reasoning. Similarly, IKRL
[55] proposes a fusion of linguistic and visual information
with structured information for link prediction. MKBE [49]
constructs a multimodal KG using numerical, image, and tex-
tual information, treating them as entities instead of auxiliary
features, for the link prediction task. MR-GCN [66] further
extends it by including support for more modalities, e.g.,
numerical, temporal, textual, visual, and spatial predicate
links in the multimodal KG. To provide a more expressive
way for interaction between different modalities, IMF [33]
uses bilinear pooling to fuse multiple modality features and
trains it using contrastive learning on the contextual entity
representations. Our work leverages link prediction in a
multimodal KG to enable OOD generalization for species
classification in camera traps.

3. Methodology
3.1. Preliminaries

Multimodal KG. Given a set of KG entities with categorical
values EKG , multimodal entities EMM, and a set of relations
R, a multimodal KG can be defined as a collection of facts
F ⊆ (EKG ∪ EMM)×R× (EKG ∪ EMM) where for each
fact f = (h, r, t), h, t ∈ (EKG ∪ EMM), r ∈ R.
KG Link Prediction. The task of link prediction is to infer
missing facts based on known facts in a KG. Given a link
prediction query (h, r, ?) or (?, r, t), the model ranks the
target entity among the set of candidate entities.
Problem Setup. The task entails species recognition for
camera trap images amidst distribution shifts. The training
and test sets comprise images obtained from disjoint camera
traps, enabling the evaluation of out-of-domain generaliza-
tion. During training, we use the multimodal KG to train our
model, while we use just the image to make predictions for
inference. The goal is to learn visual representations that are
robust to distribution shifts by leveraging the rich structural
and semantic information provided by the multimodal KG.

3.2. Building the Multimodal KG

The multimodal KG comprises entities from different modal-
ities interconnected by heterogeneous relationships. The
base KG consists of camera trap images linked with their
species labels from the training set (<image>, instance

of, <species label>). Next, we progressively aug-
ment the KG with links connecting the existing entities to
contextual information. In this work, we utilize the following
attributes to provide context for species classification:
• Taxonomy: The taxonomy forms the core of the multi-

modal knowledge graph, connecting distinct species to
higher-order taxa. For iWildCam2020-WILDS, we obtain
the phylogenetic taxonomy corresponding to the species of
interest from Open Tree Taxonomy (OTT) [46] and man-
ually link it to the species in the dataset. For the Snapshot
Mountain Zebra dataset, we utilize the iNaturalist taxon-
omy [25] mapping provided by www.lila.science.

• Location: The camera trap images are associated with
the GPS coordinates of their source cameras. For
iWildCam2020-WILDS, this metadata is available for a
portion of the images (67%) and is obfuscated within 1 km.
for privacy reasons. Animals demonstrate a preference for
particular habitats, and thus, the location context attribute
is useful for species recognition.

• Time: The timestamp attribute indicates the precise mo-
ment when the image was captured. This timestamp in-
formation proves valuable in species recognition since
specific animals exhibit activity patterns tied to particular
times of the day, such as feeding, hunting, or defending
their territory. In our multimodal knowledge graph, we
utilize the timestamp information at an hourly granularity.

Figure 1 presents a schematic representation of vari-
ous contexts in a multimodal KG. For location, time,
and taxonomy attributes, the corresponding RDF triples
can be represented as (<image>, location, <GPS
co-ordinate>), (<image>, time, <timestamp>),
and (<taxon 1>, parent, <taxon 2>), respectively.

3.3. Model Architecture

We use DistMult [67], a strong baseline on KGE bench-
marks, as our backbone KG embedding model.2 Note that
COSMO is a general framework that can leverage a variety of
KG embedding models proposed in the literature. DistMult
minimizes a bilinear scoring function between the entity em-
beddings of subject and object entities. For a given triple
(h, r, t), the scoring function of DistMult is defined as

ψ(h, r, t) = hTWrt =

d∑
i=1

hi · diag(Wr)i · ti (1)

Here, h and t denote the vector representations of the head
entity and tail entity, respectively. The relation representation
is parameterized by Wr ∈ Rd×d, a diagonal matrix.

2Recent work [51] showed that simple baselines like DistMult outper-
form more sophisticated neural network baselines when trained properly.

www.lila.science


3.3.1 Multi-modality Encoders

We use an ImageNet pre-trained ResNet-50 [24] as the im-
age encoder. The base feature of each location is represented
as a 2D vector [latitude, longitude]. Following
prior work [49], we use an MLP to project the 2D location
feature to a higher dimensional space. Similarly, for tempo-
ral context, we use an MLP to project the integer value of the
hour timestamp to the higher dimensional embedding space.
For categorical entities such as species labels and taxa, we
learn dense embeddings as representations.

3.3.2 Training

We train the model using an optimization strategy based on
the modality of the tail entity. For categorical attributes, we
formulate it as a multi-class classification problem and use
standard cross-entropy loss to train the model. For instance,
in case of a given image-species label ground truth triple
(I,instance of, s), the loss is defined as:

L(I,instance of, s) =

− log
exp(ψ(I,instance of, s))∑

s′∈S exp(ψ(I,instance of, s′))
,

(2)

where S denotes the set of all species labels and ψ(h, r, t)
denotes the plausibility score of KG edge (h, r, t).

For numerical attributes such as location and time, we for-
mulate it as a multi-class multi-label classification problem
and use a binary cross-entropy loss to optimize the parame-
ters. This choice is motivated by the fact that images can be
associated with a range of GPS coordinates and timestamps,
e.g., most animals are active multiple times during the day.
The label space comprises all entities of ground truth modal-
ity. For instance, in the case of a given time modality ground
truth triple (I,time, t), the loss is defined as:

L(I,time, t) = −
∑
t′

lI,time

t′
· log(σ(ψ(I,time, t

′
)))+

(1− lI,time

t′
) · (1− log(σ(ψ(I,time, t

′
)))),

(3)

where lI,time

t′
is a binary label that indicates whether the

triple (I, time, t′) exists in the set of observed triples and
σ(·) is the sigmoid activation function. We train the model by
sequentially minimizing the objective on each type of context
triple. Figure 1 illustrates the overall model architecture.

4. Experimental Setup
4.1. Datasets

We test our approach on the iWildCam2020-WILDS dataset
[30], a variant of the iWildCam 2020 dataset [9] and

Snapshot Mountain Zebra [48]. iWildCam2020-WILDS
is a benchmark dataset designed to test out-of-distribution
(OOD) generalization for the task of species classification.
The label space consists of 182 species. Each domain cor-
responds to a different location of the camera trap. The
training and test images belong to disjoint sets of locations
in the OOD setting.

The Snapshot Mountain Zebra dataset, part of the Snap-
shot Safari project [48], consists of camera trap images cap-
tured at the Mountain Zebra National Park, South Africa.
The label space consists of 53 species, mostly annotated at
the species level. Prominent animal species include Cape
Mountain zebra, kudu, and springbok. We manually split
the images to have disjoint camera traps in each split due
to the absence of a standard split. These datasets pose a
significant challenge for species recognition due to factors
like inadequate illumination, motion blur, occlusion, tem-
poral variations, and diverse weather conditions, effectively
reflecting the complexities of real-life camera trap usage.
Dataset statistics are shown in Table 2.

4.2. Baselines

We use the COSMO with no context that uses just the species
label edges as our baseline. In addition, we compare with
the following baseline algorithms for OOD generalization:
Empirical Risk Minimization (ERM) [30], which trains the
model to minimize average training loss, CORAL [59], a
method for unsupervised domain adaptation that learns do-
main invariant features, Group DRO [26], an algorithm that
uses distributionally robust optimization to perform well on
subpopulation shifts, Fish [56] that attempts domain adap-
tation using gradient matching, and ABSGD [50], an opti-
mization method for addressing data imbalance. All models
use a pre-trained ResNet-50 as image encoder. We evaluate
the models using overall accuracy as the metric.

4.3. Implementation Details

We implement our models in PyTorch. The hidden dimen-
sion of the multimodal KG embedding model is set to 512.
The images are resized to 448 × 448 before input to the
image encoder. We use Adam [29] optimizer with a learning
rate of 3e-5 and 1e-3 for the image encoder and the rest of
the parameters, respectively. We use early stopping based
on validation accuracy to prevent overfitting. All results are
reported with averages across three random seeds. A more
comprehensive description of the hyperparameter setup is
given in the Appendix.

5. Results

In this section, we attempt to answer the following questions:
Q1. Does the use of contextual information contribute toward

better performance? (Section 5.1)



Model
Multi-modality

Val. Acc. Test Acc.
Taxonomy Location Time

Empirical Risk Minimization (ERM) [30]

–

62.7 (2.4) 71.6 (2.5)

CORAL [59] 60.3 (2.8) 73.3 (4.3)

Group DRO [26] 60.0 (0.7) 72.7 (2.0)

Fish [56] 58.0 (0.2) 63.2 (0.7)

ABSGD [50] – 72.7 (1.8)

COSMO (no-context) – 63.2 (0.4) 68.8 (2.1)

Si
ng

le

co
nt

ex
t

COSMO

✓ 62.8 (2.2) (-0.4) 72.4 (2.5) (+3.6)

✓ 64.4 (1.0) (+1.2) 74.5 (3.6) (+5.7)

✓ 64.7 (0.4) (+1.5) 71.1 (3.1) (+2.3)

M
ul

tip
le

co
nt

ex
ts

COSMO

✓ ✓ 65.4 (0.4) (+2.2) 70.4 (2.1) (+1.6)

✓ ✓ 64.9 (1.6) (+1.7) 73.7 (3.8) (+4.9)

✓ ✓ 63.0 (2.1) (-0.2) 74.2 (2.2) (+5.4)

✓ ✓ ✓ 65.0 (1.6) (+1.8) 71.5 (2.8) (+2.7)

Table 1. Species Classification results on iWildCam2020-WILDS (OOD) dataset. The first baseline in the second section shows the
no-context baseline that uses only image-species labels as KG edges. All models use a pre-trained ResNet-50 as image encoder. Parentheses
show standard deviation across 3 random seeds. Missing values are denoted by –.

Dataset Split # Images # Camera traps

iWildCam2020-WILDS
Train 129,809 243
Val. 14,961 32
Test 42,791 48

Snapshot Mountain Zebra
Train 39,820 13
Val. 14,754 3
Test 18,417 3

Table 2. Dataset Statistics.

Q2. How does COSMO’s performance compare to the exist-
ing state-of-the-art? (Section 5.2)

Q3. Does the taxonomy-aware COSMO model result in more
semantically plausible predictions? (Section 5.4.1)

Q4. How does COSMO’s performance compare to baselines
for under-represented species? (Section 5.4.3)

5.1. Performance Comparison with Addition of
Multimodal Context

We add taxonomy, location, and temporal context informa-
tion to the base KG and observe the impact on the species
classification performance. Table 1 shows the results for

Model Multi-modality Test Acc.
Taxonomy Time

ERM [30]

–

96.2 (0.6)
CORAL [59] 96.6 (1.2)
Group DRO [26] 93.4 (2.1)
ABSGD [50] 93.4 (2.0)

COSMO (no-context) – 92.9 (2.5)

COSMO
✓ 93.9 (2.8) (+1.0)

✓ 95.3 (3.1) (+2.4)
✓ ✓ 96.8 (0.4) (+3.9)

Table 3. Species Classification results on Snapshot Mountain Zebra
dataset. We obtain the results for OOD baselines by training them
on this dataset using pubicly available code.

iWildCam2020-WILDS dataset. We make the following
observations from these results:

Firstly, the addition of one or more contexts results in a
performance gain over the no-context baseline in the vast
majority of cases. For instance, in the case of COSMO
with taxonomy, we obtain a 3.6% improvement over the
no-context baseline in terms of test accuracy. Incorporat-



COSMO (w/ taxonomy)

COSMO (no-context)

Ocelot
(leopardus pardalis)

Gray fox
(urocyon cinereoargenteus)

ocelot (leopardus pardalis) → 
leopardus → felinae → felidae → 
feliformia → carnivora

Gray fox (urocyon cinereoargenteus) → 
urocyon → canidae → caniformia → 
carnivora

Camera Trap
Image

COSMO (w/ taxonomy)

COSMO (no-context)

Ocellated turkey
(meleagris ocellata)

Central American agouti
(dasyprocta punctata)

ocelot (leopardus pardalis) → 
leopardus → felinae → felidae → 
feliformia → carnivora

Gray fox (urocyon cinereoargenteus) → 
urocyon → canidae → caniformia → 
carnivora

Camera Trap
Image

Taxonomy

Figure 2. Comparison of COSMO model with and without taxonomy edges (iWildCam2020-WILDS validation set). The use of taxonomy
information helps the model to avoid semantically implausible predictions.

ing location context produces a notable 5.7% enhancement
in test set accuracy, underlining the significance of auxil-
iary information for improved out-of-domain generalization.
We further analyze the role of location in predicting the
species distribution in Section 5.4.2. Additionally, utilizing
the time attribute yields a substantial improvement over the
no-context baseline, resulting in a 2.3% performance gain.

Secondly, we observe that the use of multiple contexts
results in a performance boost in a majority of cases. For in-
stance, the addition of location and time attributes improves
over the taxonomy baseline by a margin of 2.6% and 2.1%
respectively in terms of validation set accuracy. Similarly,
the taxonomy with time baseline obtains an improvement
of 1.3% and 2.6% over the taxonomy and time baselines,
respectively in terms of test accuracy.

Table 3 shows the results for the Snapshot Mountain
Zebra dataset. Incorporating taxonomy and time contexts
results in a performance boost of 1% and 2.4% respectively,
over the no-context baseline. Furthermore, their combined
use yields a noteworthy 3.9% gain in test accuracy.

5.2. Comparison with OOD Generalization Ap-
proaches

We compare the performance of the COSMO with methods
specifically designed for out-of-domain generalization. No-
tably, our best-performing model, which uses location as
context, achieves state-of-the-art performance in terms of
OOD test accuracy, outperforming the existing SOTA model
by 1.2% on the iWildCam2020-WILDS dataset. Likewise,
COSMO with taxonomy and time contexts outperforms ex-
isting approaches on Snapshot Mountain Zebra dataset. This

demonstrates the effectiveness of leveraging diverse multi-
modal contexts for achieving more robust OOD generaliza-
tion, even in the absence of sophisticated objectives aimed
at improving domain generalization, e.g., CORAL, Group
DRO, ABSGD, and Fish.

Model Configuration KGE Val. Acc.

No-context
DistMult 63.2 (0.4)
ConvE 62.2 (0.4)

Taxonomy Only
DistMult 62.8 (2.2)
ConvE 64.7 (0.6)

Location Only
DistMult 64.4 (1.0)
ConvE 63.8 (1.8)

Time Only
DistMult 64.7 (0.4)
ConvE 59.6 (2.8)

Taxonomy, Location, Time
DistMult 65.0 (1.6)
ConvE 55.8 (3.5)

Table 4. Performance comparison among different KGE models
(iWildCam2020-WILDS). DistMult outperforms ConvE in a ma-
jority of cases.

5.3. Compairson with Alternative KGE backbones

In our preliminary experiments, we also experiment with
ConvE [17], a strong neural network baseline, as an alternate
choice for the KGE backbone model, instead of DistMult for
the iWildCam2020-WILDS dataset. We observe that Dist-
Mult outperforms ConvE in a majority of cases, especially
when all context types are used together. Furthermore, Dist-



Model Avg. LCA height

COSMO (no-context) 6.72
COSMO (w/ taxonomy) 6.39

Table 5. Quantitative evaluation of COSMO errors with and without
taxonomy using a hierarchical distance metric (iWildCam2020-
WILDS). The taxonomy-aware model achieves better performance
in terms of Avg. LCA height.

Mult holds the advantage of being more computationally effi-
cient than neural network based KG embedding approaches.

5.4. Fine-grained Analyses

5.4.1 Error Analysis for the Taxonomy-aware Model

To analyze the predictions of our model with and without
taxonomy information, we employ a metric that takes into
account the hierarchical structure of the labels. Conventional
measures like top-1 accuracy treat all errors equally, disre-
garding the semantic relationships among labels. Hence, we
use the Least Common Ancestor (LCA) [10] for the mis-
classified examples as the metric for this analysis (Table 5).
A lower LCA value indicates that the errors made by the
taxonomy-aware model are more semantically related to the
true label than the baseline.

We compare the predictions of COSMO which uses tax-
onomy to the no-context baseline (Figure 2). Notably, the
inclusion of taxonomy information assists the model in avoid-
ing implausible predictions. For instance, consider the case
of the animal ocelot (eopardus pardalis), which belongs to
the cat family (feliformia). The use of taxonomy informa-
tion prevents the misprediction of this animal as a gray fox,
which belongs to the dog family (caniformia). Similarly, in
the second example, the baseline model incorrectly predicts
the given image as Central American agouti, a mammal,
instead of ocellated turkey, a bird.

5.4.2 Correlation Analysis for Location and Time At-
tributes

We examined the relationship between species distribution
and numerical attributes, such as location and time, to gain
insights into how these contexts contribute to the task. The
location coordinates can be grouped into six clusters. A vi-
sualization of the location clusters is shown in Figure 4. For
each pair of cluster centroids, we compute the Bhattacharyya
distance [11], a measure of similarity between probability
distributions, between the training and validation set species
distributions (Figure 3a). Similarly, we plot the distance be-
tween species distributions corresponding to each hour of the
day (Figure 3b). We observe that the similarity (corresponds
to lower distance) peaks along the diagonal for the location
attribute, as well as for the day/night categorization of the

(a) Each color square shows the distance between the corresponding
validation cluster centroid on x-axis and the training cluster centroid on
y-axis. The correlation peaks along the diagonal3.

(b) Each color square shows the distance between the corresponding
training hour slot on x-axis and validation hour slot on y-axis. The
correlation peaks for day-day and night-night hour slots.

Figure 3. Correlation analysis for location and time attributes. Best
viewed in color.

time attribute. This suggests these metadata give a prior for
species class distribution.

Model Accuracy

ERM (ResNet-50) 16.3
COSMO 19.0 (+2.7)

Table 6. Performance comparison on under-represented species
classification (OOD Test set). The best performing COSMO model
improves over the ERM baseline by a significant margin.

3The null value in row 4 is due to the absence of species overlap with
respective validation clusters. The null value in columns 3 and 4 indicates
the absence of these clusters in the validation set.



Figure 4. Plot of location GPS coordinates for training and val-
idation splits (iWildCam2020-WILDS). The coordinates can be
grouped into six clusters. Most coordinates exhibit an overlap with
their respective cluster centroids at this visualization scale.

5.4.3 Performance Comparison for Under-represented
Species

The iWildCam2020-WILDS dataset exhibits a long-tail
species distribution [30], posing challenges for accurately
recognizing species that are under-represented in the training
set. We compare the performance of our best-performing
model (COSMO with location context) to the baseline Em-
pirical Risk Minimization (ResNet-50) model (Table 6). We
chose examples whose labels have a maximum of 100 in-
stances in the training set and report the overall test set ac-
curacy for this subset of species. This includes species like
banded palm civet, Brazilian cottontail, and leopard which
are listed as vulnerable in IUCN’s list of threatened species
[63]. We observe that COSMO outperforms the ERM base-
line by 2.7%, which is a 16.6% relative improvement. These
findings illustrate the potential of our model to mitigate sam-
ple inefficiency in existing approaches for under-represented
species by utilizing multimodal context information.

6. Discussion and Conclusion

In this work, we presented a novel framework in which the
species classification task is reformulated as link prediction
in a multimodal KG of species images and their associated
heterogeneous contexts. This enables a unified way to lever-
age various forms of multimodal context, e.g., numerical, cat-
egorical, and taxonomy information associated with images
for species identification in camera traps. Through our exper-
iments, we demonstrate that our framework achieves superior
out-of-distribution (OOD) generalization and competitive
performance with state-of-the-art for species classification
on the iWildCam2020-WILDS and Snapshot Mountain Ze-

bra datasets. Additionally, our framework demonstrates im-
proved sample efficiency in recognizing under-represented
and vulnerable wildlife species.

We assume that there is a perfect linkage between these
contexts and the corresponding images in the training set.
However, in scenarios where such linkage is unavailable, the
training procedure may introduce noise, which could lead to
inferior generalization capabilities in the model. Addition-
ally, it is important to note that the effectiveness of diverse
contexts varies based on their informativeness for the given
task. Interestingly, combining two or more contexts could
degrade performance compared to using a single context
type in some cases (Table 1). We hypothesize that specific
metadata, like location, could exert a stronger regularization
influence on improving generalization in species recognition
tasks than other metadata. To improve this aspect, future
work will involve enabling the model to assign higher impor-
tance to more informative metadata.

Furthermore, we are interested in training a foundation
model for camera trap species identification across a wider
spectrum of species. This model is expected to generalize
more effectively to novel camera trap deployments across the
world. Additionally, we would like to focus on integrating a
more comprehensive spectrum of diverse contexts such as
temperature, weather conditions, habitat, and sequence in-
formation for use with real-world camera trap deployments.
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Supplementary Material

A. Datasets
The iWildCam2020-WILDS dataset [30] and Snapshot
Mountain Zebra dataset [48] are released under the Commu-
nity Data License Agreement (CDLA). The Open Tree Tax-
onomy [46] is licensed under Creative Commons Attribution
1.0 Generic license. Both licenses permit their use for aca-
demic research in their original form. The iWildCam2020-
WILDS label space consists of 182 species. Out of these 182
species, 155 species have support in the OTT taxonomy.

B. Hyperparameter and Experiment Details
The hidden dimension of the multimodal KG embedding
model is set to 512, with a batch size of 16. In our experi-
ments, iWildCam2020-WILDS was trained for 12 epochs,
whereas Snapshot Mountain Zebra required 15 epochs for
optimal performance. All images are resized to 448× 448.
We use Adam [29] optimizer with a learning rate of 3e-5 and
1e-3 for the image encoder and the rest of the parameters,
respectively. For the location and time attributes, we use
a 3-layer MLP that projects the feature input dimension to
the embedding dimension and uses PReLU as the activa-
tion function. We use early stopping based on validation
accuracy to prevent overfitting. The early stopping patience
parameter is set to 5 epochs. Table B.1 and Table B.2 show
the training time of COSMO under different settings for
iWildCam2020-WILDS and Snapshot Mountain Zebra, re-
spectively. We performed all experiments using a single
Nvidia RTX A6000 GPU.

Multi-modality Running time (hrs.)
Taxonomy Location Time

– 3.9
✓ 3.9

✓ 6.3
✓ 7.5

✓ ✓ 6.3
✓ ✓ 7.5

✓ ✓ 9.9
✓ ✓ ✓ 9.9

Table B.1. Training time for different ablations of COSMO
(iWildCam2020-WILDS). All experiments use a single Nvidia
RTX A6000 GPU.

C. Time Attribute Analysis
We analyzed the time attributes associated with the im-
ages of the 10 most frequent species in the training set of
iWildCam2020-WILDS dataset (Figure C.1). We observed
a significant difference in the species distributions between

Multi-modality Running time (hrs.)
Taxonomy Time

– 4.2
✓ 4.2

✓ 7.0
✓ ✓ 7.0

Table B.2. Training time for different ablations of COSMO (Snap-
shot Mountain Zebra). All experiments use a single Nvidia RTX
A6000 GPU.

day and night4. This indicates that temporal information
plays a crucial role in recognizing these species.

Figure C.1. Species probabilities conditioned on day/night for
the 10 most frequent species in the training set (iWildCam2020-
WILDS). Animal species demonstrate distinct temporal preferences
for their daily activities, as evidenced by the contrasting probabili-
ties observed during day and night.

4In this analysis, we define the time duration between 5 A.M. and 7 P.M.
local time as daytime.
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