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ABSTRACT

In recent years we have seen substantial advances in foundation
models for artificial intelligence, including language, vision, and
multimodal models. Recent studies have highlighted the poten-
tial of using foundation models in geospatial artificial intelligence,
known as GeoAlI Foundation Models, for geographic question an-
swering, remote sensing image understanding, map generation,
and location-based services, among others. However, the develop-
ment and application of GeoAl foundation models can pose serious
privacy and security risks, which have not been fully discussed or
addressed to date. This paper introduces the potential privacy and
security risks throughout the lifecycle of GeoAl foundation models
and proposes a comprehensive blueprint for research directions
and preventative and control strategies. Through this vision paper,
we hope to draw the attention of researchers and policymakers
in geospatial domains to these privacy and security risks inherent
in GeoAl foundation models and advocate for the development of
privacy-preserving and secure GeoAl foundation models.
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1 INTRODUCTION

Foundation Models (FMs) are large Artificial Intelligence (AI) mod-
els pre-trained on vast web-scale data and can be adapted to address
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a variety of downstream tasks such as machine translation and im-
age recognition. Depending on the modalities involved, foundation
models can be further categorized into language foundation mod-
els (e.g., GPT-3 [4], LLaMA [32]), vision foundation models (e.g.,
Segment Anything [15]), or multimodal foundation models such as
vision-language foundation models (e.g., GPT-4 [24], BLIP-2 [16])
and those connecting more modalities including video and audio
(e.g., ImageBind [9]). In recent years, chatbots such as ChatGPT and
Bard as well as generic vision tools including Segment Anything
and Stable Diffusion have showcased the proficiency of foundation
models in addressing a wide range of natural language processing
and computer vision tasks.

The success of foundation models has motivated researchers to
incorporate them into geospatial domains to tackle challenges in
Geospatial Artificial Intelligence (GeoAl) [12], known as GeoAl
Foundation Models or Geo-Foundation Models (GeoFM) [21]. Re-
cent explorations have delved into areas like geoparsing [22], urban
planning [33], geographic question answering [21], remote sensing
semantic segmentation [38, 8], and map generation [13], among
others, yielding promising results. However, recent studies also
reveal that the development and use of foundation models could
potentially unveil substantial privacy and security risks, including
the disclosure of sensitive information, representational bias, hallu-
cinations, and misuse [3, 11]. These risks have sparked widespread
public concerns and triggered the imposition of prohibitions and
strict regulations in many countries and regions. Early regulations
can be inadequate for several reasons, e.g., 1) technology evolves
faster than regulations; 2) ensuring compliance and monitoring is
challenging; and 3) progress in domains that would benefit most can
slow down. In this vision paper, we summarize the potential privacy
and security risks in GeoAl foundation models and propose a blue-
print for building privacy-preserving and secure GeoAl foundation
models with corresponding research directions and promising pre-
ventative and control strategies. As foundation models increasingly
exhibit dominance, we hope they also raise awareness of the equal
importance of privacy and security, spurring more researchers to
study these aspects of GeoAl foundation models.

2 PRIVACY AND SECURITY RISKS

Privacy and security are two intertwined concepts. Generally speak-
ing, privacy refers to people’s personal or sensitive information
and their rights to prevent the disclosure of such information. Se-
curity refers to how such information is protected. In geospatial
domains, privacy and security often concern sensitive geospatial
information such as home location, workspace, Points-of-Interest
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(POI) preferences, daily trajectories, and inferences based on such
information [14, 27]. In the lifecycle of building and utilizing GeoAI
foundation models, we identify a series of potential privacy and se-
curity risks that exist around the pre-training and fine-tuning stages
with geospatial data, centralized serving and tooling, prompting-
based interaction, and feedback mechanisms.

2.1 Risks in Geospatial Pre-training

As large pre-trained models, the capability of foundation models re-
lies heavily on the scale, quality, and diversity of their pre-training
data. For example, GPT-3 was pre-trained on a huge language cor-
pus consisting of around 500 billion tokens from Web resources
(e.g., CommonCrawl, Wikipedia) and books. BLIP-2 and DINOv2
were pre-trained on 129 million images (with captions) and 142
million images, respectively. Similarly, to pre-train a GeoAl foun-
dation model, large-scale geospatial data are the key. Given the
multimodal nature of geospatial domains, geospatial data involve
various modalities such as language (e.g., street address, geo-tagged
social media posts), vision (e.g., remote sensing and street view im-
agery, atlases), and structured data such as vectors (e.g., trajectories),
graphs (e.g., geospatial knowledge graphs), and tabular data (e.g.,
census). All of them may contain personal or sensitive geospatial
information that can be learned and disclosed by GeoAl foundation
models. For example, a language model could potentially memorize
home addresses from a pre-training corpus and disclose them to
anyone who asks. A vision-language model, likewise, may learn
the alignment between a building and its residents who have men-
tioned it on social media. If someone were to upload a picture of
that building and asked, "Who lives in this building?", the model
might list all the residents it recognizes from social media. Since
how foundation models determine to learn and utilize the data
remains opaque, it is challenging to prevent a GeoAl foundation
model from acquiring, retaining, and divulging sensitive geospatial
information without adequate privacy and security measures.

2.2 Risks in Geospatial Fine-tuning

In practice, due to limitations in computational resources and the
availability of domain-specific data, we usually adopt model weights
from foundation models pre-trained on a general domain and fur-
ther fine-tune it on domain-specific data (i.e., domain adaptation)
such as geospatial data. Common fine-tuning methods for founda-
tion models include model fine-tuning, where models are fine-tuned
on domain-specific data (for instance, instruction tuning focuses
on fine-tuning models to follow given instructions), and prompt
tuning, which involves fine-tuning input prompts rather than the
models themselves. There are several risks associated with the fine-
tuning data and the fine-tuning process: 1) Memorizing sensitive
data. Analogous to geospatial pre-training, if the fine-tuning data
contains personal or sensitive geospatial information, a GeoAl foun-
dation model may potentially learn, memorize, and disseminate
such information after the model has been fine-tuned; 2) Poison-
ing by malicious instructions. During instruction tuning, if the
instruction dataset has been poisoned or injected with malicious
instructions such as backdoors [34], the fine-tuned models can be
easily manipulated and perform malicious activities (e.g., analyz-
ing and revealing home locations of individuals); and 3) Attacks
due to leaked soft prompts. For prompt tuning, since the soft
prompts (e.g., embeddings) are tuned on user input data, once such
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soft prompts are leaked, attackers might be able to infer user input
information (e.g., frequently mentioned places) from these prompts.

2.3 Risks in Centralized Serving and Tooling

After training, GeoAl foundation models are usually hosted on cen-
tralized servers. There are two paradigms of how GeoAl foundation
models can be used to provide services. One paradigm is that we
fully rely on the internal knowledge of models learned during the
pre-training or fine-tuning stage to provide services such as ques-
tion answering. Another paradigm is that we enable the models
with geospatial tooling ability by connecting the models to exter-
nal geospatial resources such as geospatial databases, tools, and
APIs via autonomous LLM frameworks [17, 7] such as LangChain !
and AutoGPT 2 so that the models can acquire and utilize external
geospatial knowledge on which they were not trained to further
enhance their functionality. Both paradigms may expose privacy
and security risks. First, centralized serving brings endogenous
privacy risks as all users’ requests need to be sent to and stored in a
centralized server. Sometimes, these requests may contain sensitive
geospatial information that users are unwilling to disclose. Recent
payment leakage > and chat history leakage * in ChatGPT show
that as soon as the data leaves a user’s device, avoiding privacy and
security risks becomes very challenging. Second, since the model
weights are stored in a centralized server, an attacker may be able
to hack into the server to steal the weights, reconstruct training
data from the weights [10], or perform membership inference at-
tacks [23]. Third, when GeoAl foundation models are connected
to external geospatial resources, attackers might make models dis-
close sensitive information from external resources (e.g., geospatial
database credentials or third-party private geospatial data).

2.4 Risks in Prompt-Based Interaction

Prompt-based interactions are widely supported in most founda-
tion models. Properly designed prompts can leverage the in-context
learning (e.g., zero-shot or few-shot learning) ability of foundation
models to tackle a wide variety of tasks. Many geospatial applica-
tions built upon foundation models are directly based on prompt
engineering. For example, ChatGeoPT ° and MapsGPT ¢ both in-
corporate language foundation models with pre-defined prompt
templates covering the use of Location-Based Service (LBS) APIs to
provide users with flexible location search experience via natural
language. In contrast, improper prompts can be used to “jailbreak”
models to get sensitive information or “hijack” models to perform
something dangerous, illegal, or unethical. Common prompt attack
methods include Do Anything Now 7 (i.e., bypass pre-set content
policy), Goal Hijacking [25] (i.e., ignore pre-defined prompts), etc.,
which can cause serious privacy and security issues: 1) Training
data leakage. Recent studies [5, 36] reveal that by constructing
certain types of prompts or prefixes, attackers can make founda-
tion models output the content they memorized during the train-
ing stage, such as home locations of individuals; 2) Pre-defined
prompt leakage. Attackers may use certain prompts to ask the

Lhttps://pythonlangchain.com/
Zhttps://github.com/Significant-Gravitas/Auto-GPT
Shttps://cybernews.com/news/payment-info-leaked-openai-chatgpt-outage/
*https://www.bbc.com/news/technology-65047304
Shttps://github.com/earth-genome/ChatGeoPT

®https://www.mapsgpt.com/

7https://github.com/0xk1h0/ChatGPT_DAN
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models to divulge their pre-defined prompts, which may contain
sensitive information such as instructions to access internal geospa-
tial systems. Recent prompt leakage accidents of Bing Chat and
Snap’s MyAlI suggest that it is hard to make foundation models fully
immune to such prompt attacks even with privacy and security
measures established; 3) External resource leakage. As men-
tioned previously, attackers may use malicious prompts to induce
models to send queries to the connected geospatial database and
get sensitive geospatial information; and 4) Malicious behaviors.
Attackers may use malicious prompts to induce models to send
phishing emails, scams, or commit cybercrimes [6].

2.5 Risks in Feedback Mechanisms

Feedback mechanisms play an important role in continuously im-
proving the quality of foundation models and making foundation
models helpful and safe. Two common paradigms are Reinforce-
ment Learning from Human Feedback (RLHF) [2] and Reinforce-
ment Learning from Al Feedback (RLAIF) [1]. The former utilizes
human evaluation as rewards or penalties to improve models, while
the latter asks Al to improve itself. In some cases, these feedback
mechanisms can also be utilized by attackers to impact model qual-
ity and even make models toxic. For example, attackers can create
plenty of misleading feedback or conduct backdoor reward poison-
ing attack [39, 31] against the RL process, causing the models to
produce false geographical knowledge, geographical discrimination
remarks, or controversial geopolitical statements.

3 TOWARDS PRIVACY-PRESERVING AND
SECURE GEOAI FOUNDATION MODELS

Motivated by the above-mentioned privacy and security risks, we
advocate for building privacy-preserving and secure GeoAl foun-
dation models. We propose a blueprint (shown in Figure 1) that
outlines multiple research directions, along with their associated
challenges and promising approaches.
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Figure 1: A blueprint of building privacy-preserving and se-
cure GeoAl foundation models.

3.1 Privacy-Preserving Geospatial Data

Large-scale privacy-preserving geospatial data is key to building
privacy-preserving and secure GeoAl foundation models. The mul-
timodal nature of geospatial data implies that different types of
geospatial data require different privacy protection methods (e.g.,
geomasking, K-anonymity, and differential privacy for locations
and trajectories, and blurring and mosaic for street view images),
and some privacy risks exist in a cross-modal fashion (e.g., revealing
home locations by associating social media posts and street view
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images). Thus, three challenges arise in this direction: 1) how to
effectively process and preserve the privacy of large-scale multi-
modal geospatial data. This is a novel challenge to GeoAl foundation
models as we must address cross-modal privacy risks in geospatial
data while maintaining geospatial alignment; 2) how to strike a
balance between geospatial data privacy and utility. This becomes
more complex in GeoAl foundation models compared to traditional
approaches as the dimensions of modalities, levels of scales, and
data size increase significantly; and 3) how to measure and mitigate
potential geographic biases [18] existing in large-scale multimodal
geospatial data. Promising approaches include using spatial clus-
ter computing frameworks such as Apache Sedona for large-scale
geospatial data processing, using deep learning methods to protect
location privacy and balance the privacy-utility trade-off [27, 28],
using multimodal instruction tuning to enhance alignment among
modalities and reduce biases and hallucinations [19], etc.

3.2 Private and Secure Training and Serving

Traditional centralized training and serving strategies require train-
ing data and model weights to be stored on a centralized server.
However, in most cases, users are reluctant to share their data due
to privacy concerns. This inherent risk in the centralized structure
poses three challenges for GeoAl foundation models: 1) how to
conduct geospatial pre-training and fine-tuning in ways that en-
sure both privacy and security; 2) how to ensure the privacy and
security of hosted GeoAl foundation models (e.g., preventing model
weight leakage and inference attacks); and 3) when switching to
decentralized training and serving strategies, how to deal with
non-Independently Identically Distributed (non-IID) training data.
This scenario frequently occurs when data is collected across dif-
ferent geographic regions due to spatial heterogeneity. Promising
approaches include efficient encoding and encryption for geospa-
tial data, model weights, and data transfer procedures, federated
learning for pre-training, fine-tuning, and prompt engineering [26,
37, 35], geospatial-aware contrastive pre-training [20], etc.

3.3 Private and Secure Geospatial Tooling

Geospatial tooling greatly enhances the usability and extensibility
of GeoAlI foundation models. For example, geographic information
retrieval can improve the truthfulness and timeliness of the models,
and various geospatial resources and services can equip the models
with location tracking, spatial analysis, and geocomputing capa-
bilities. However, allowing GeoAl foundation models to connect
to various geospatial tools without restrictions might result in se-
vere privacy and security issues such as sensitive geospatial data
leakage and misuse. This raises two challenges: 1) how to design a
generic and secure protocol to regulate geospatial tooling for GeoAl
foundation models; and 2) how to teach models to use geospatial
tools and interpret results in ways that uphold privacy and security.
Promising approaches include adopting in-context learning [30],
fine-tuning [29, 2, 1], and autonomous agents [17] to improve and
regulate geospatial tooling for GeoAl foundation models.

3.4 Private and Secure Interaction with GeoFMs

Prompt-based interaction facilitates natural communication be-
tween users and GeoAl foundation models, but it also raises privacy
and security concerns. The key to ensuring privacy-preserving and
secure prompt-based interaction is to identify malicious prompts
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from the myriad of user inputs. This presents three challenges: 1)
how to understand the intentions behind prompts and filter out
malicious prompts; 2) how to evaluate the resilience and robustness
of GeoAl foundation models against malicious prompts; and 3) how
to ensure users do not accidentally send sensitive geospatial infor-
mation to GeoAl foundation models via prompts and vice versa.
Promising approaches include developing a generic detector that
can detect or filter out either malicious prompts or sensitive geospa-
tial information from the users’ side, establishing an evaluation
framework covering different types of malicious prompts to test
GeoAl foundation models’ resilience and robustness, etc.

3.5 Secure Feedback Mechanisms

Feedback mechanisms such as RLHF and RLAIF can be exploited by
attackers using poisoned feedback, leading to harmful GeoAl foun-
dation models that produce inaccurate, controversial, or unethical
geographic statements. In terms of ensuring secure feedback mech-
anisms, we highlight two challenges: 1) how to identify poisoned
feedback and determine if, when, where, and how the feedback
mechanisms or reward functions are compromised (e.g., poisoned
feedback could be comments or ratings that induce the model to
deviate from expected behavior); and 2) how to determine the best
recovery or fallback strategy when we realize the feedback mech-
anisms are poisoned. In these cases, we can evaluate the model’s
behavior using a comprehensive benchmark set of geographic com-
monsense knowledge and conversations and measure the shift of
truthfulness and harmfulness between versions. In addition, analyz-
ing the data distribution of feedback, monitoring the reward curve,
and regularly saving model weights are also beneficial.

4 CONCLUSION

This vision paper discusses privacy and security risks in GeoAI
foundation models and proposes a blueprint for privacy-preserving
and secure GeoAl foundation models. Addressing privacy and se-
curity risks in new technologies requires not only regulations but
also evolving technical solutions and societal ethical discussions.
We hope this paper can raise awareness among researchers and
policymakers about the privacy and security risks associated with
GeoAl foundation models and promote positive future development
of GeoAl foundation models that respect privacy and security.

ACKNOWLEDGMENTS

Song Gao acknowledges the funding support from the National
Science Foundation funded Al institute [Grant No. 2112606] for
Intelligent Cyberinfrastructure with Computational Learning in
the Environment (ICICLE).

REFERENCES

[1]  Yuntao Bai et al. “Constitutional Al: Harmlessness from Al Feedback”. In: arXiv
preprint arXiv:2212.08073 (2022).

[2]  Yuntao Bai et al. “Training a helpful and harmless assistant with reinforcement
learning from human feedback”. In: arXiv preprint arXiv:2204.05862 (2022).

[3] Rishi Bommasani et al. “On the opportunities and risks of foundation models”.
In: arXiv preprint arXiv:2108.07258 (2021).

[4] Tom Brown et al. “Language models are few-shot learners”. In: Advances in
neural information processing systems 33 (2020), pp. 1877-1901.

[5]  Nicholas Carlini et al. “Extracting Training Data from Large Language Models.”
In: USENIX Security Symposium. Vol. 6. 2021.

[6] Mark Chen et al. “Evaluating large language models trained on code”. In: arXiv
preprint arXiv:2107.03374 (2021).

[7]  Haixing Dai et al. “AD-AutoGPT: An Autonomous GPT for Alzheimer’s Disease
Infodemiology”. In: arXiv preprint arXiv:2306.10095 (2023).

(8]

[9]

[10]

(1]

(13]
[14]
(15]

[16]

(28]

(35]

Rao et al.

Paolo Fraccaro et al. HLS Foundation. Aug. 2023. por: https://huggingface.co/
ibm-nasa- geospatial/Prithvi- 100M. URL: https://github.com/nasa-impact/hls-
foundation-os.

Rohit Girdhar et al. “Imagebind: One embedding space to bind them all”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2023, pp. 15180-15190.

Niv Haim et al. “Reconstructing training data from trained neural networks”.
In: arXiv preprint arXiv:2206.07758 (2022).

Krzysztof Janowicz. “Philosophical foundations of geoai: Exploring sustain-
ability, diversity, and bias in geoai and spatial data science”. In: arXiv preprint
arXiv:2304.06508 (2023).

Krzysztof Janowicz et al. “GeoAl: spatially explicit artificial intelligence tech-
niques for geographic knowledge discovery and beyond”. In: International
Journal of Geographical Information Science 34.4 (2020), pp. 625-636.

Yuhao Kang et al. “The ethics of Al-Generated maps: A study of DALLE 2 and
implications for cartography”. In: arXiv preprint arXiv:2304.10743 (2023).
Carsten KeBler et al. “A geoprivacy manifesto”. In: Transactions in GIS 22.1
(2018), pp. 3-19.

Alexander Kirillov et al. “Segment anything”. In: arXiv preprint arXiv:2304.02643
(2023).

Junnan Li et al. “Blip-2: Bootstrapping language-image pre-training with frozen
image encoders and large language models”. In: arXiv preprint arXiv:2301.12597
(2023).

Zhenlong Li et al. “Autonomous GIS: the next-generation Al-powered GIS”. In:
arXiv preprint arXiv:2305.06453 (2023).

Zilong Liu et al. “Geoparsing: Solved or Biased? An Evaluation of Geographic
Biases in Geoparsing”. In: AGILE: GIScience Series 3 (2022), p. 9.

Jiaying Lu et al. “Evaluation and Mitigation of Agnosia in Multimodal Large
Language Models”. In: arXiv preprint arXiv:2309.04041 (2023).

Gengchen Mai et al. “CSP: Self-Supervised Contrastive Spatial Pre-Training for
Geospatial-Visual Representations”. In: arXiv preprint arXiv:2305.01118 (2023).
Gengchen Mai et al. “On the opportunities and challenges of foundation models
for geospatial artificial intelligence”. In: arXiv preprint arXiv:2304.06798 (2023).
Gengchen Mai et al. “Towards a foundation model for geospatial artificial
intelligence (vision paper)”. In: Proceedings of the 30th International Conference
on Advances in Geographic Information Systems. 2022, pp. 1-4.

Justus Mattern et al. “Membership Inference Attacks against Language Models
via Neighbourhood Comparison”. In: arXiv preprint arXiv:2305.18462 (2023).
OpenAl. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

Fabio Perez et al. “Ignore Previous Prompt: Attack Techniques For Language
Models”. In: arXiv preprint arXiv:2211.09527 (2022).

Jinmeng Rao et al. “A privacy-preserving framework for location recommen-
dation using decentralized collaborative machine learning”. In: Transactions in
GIS 25.3 (2021), pp. 11531175,

Jinmeng Rao et al. “CATS: Conditional Adversarial Trajectory Synthesis for
Privacy-Preserving Trajectory Data Publication Using Deep Learning Ap-
proaches”. In: International Journal of Geographical Information Science 37
(2023), pp. 1-30.

Jinmeng Rao et al. “LSTM-TrajGAN: A Deep Learning Approach to Trajectory
Privacy Protection”. In: 11th International Conference on Geographic Information
Science (GIScience 2021)-Part I. Schloss Dagstuhl-Leibniz-Zentrum fiir Infor-
matik. 2020.

Timo Schick et al. “Toolformer: Language models can teach themselves to use
tools”. In: arXiv preprint arXiv:2302.04761 (2023).

Yongliang Shen et al. “Hugginggpt: Solving ai tasks with chatgpt and its friends
in huggingface”. In: arXiv preprint arXiv:2303.17580 (2023).

Jiawen Shi et al. “BadGPT: Exploring Security Vulnerabilities of ChatGPT via
Backdoor Attacks to InstructGPT”. In: arXiv preprint arXiv:2304.12298 (2023).
Hugo Touvron et al. “Llama: Open and efficient foundation language models”.
In: arXiv preprint arXiv:2302.13971 (2023).

Dongjie Wang et al. “Towards automated urban planning: When generative
and chatgpt-like ai meets urban planning”. In: arXiv preprint arXiv:2304.03892
(2023).

Jiashu Xu et al. “Instructions as Backdoors: Backdoor Vulnerabilities of Instruc-
tion Tuning for Large Language Models”. In: arXiv preprint arXiv:2305.14710
(2023).

Sixing Yu et al. “Federated Foundation Models: Privacy-Preserving and Collab-
orative Learning for Large Models”. In: arXiv preprint arXiv:2305.11414 (2023).
Weichen Yu et al. “Bag of tricks for training data extraction from language
models”. In: arXiv preprint arXiv:2302.04460 (2023).

Jianyi Zhang et al. “Towards Building the Federated GPT: Federated Instruction
Tuning”. In: arXiv preprint arXiv:2305.05644 (2023).

Jielu Zhang et al. “Text2Seg: Remote Sensing Image Semantic Segmentation
via Text-Guided Visual Foundation Models”. In: arXiv preprint arXiv:2304.10597
(2023).

Xuezhou Zhang et al. “Adaptive reward-poisoning attacks against reinforce-
ment learning”. In: International Conference on Machine Learning. PMLR. 2020,
pp. 11225-11234.


https://doi.org/https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M
https://doi.org/https://huggingface.co/ibm-nasa-geospatial/Prithvi-100M
https://github.com/nasa-impact/hls-foundation-os
https://github.com/nasa-impact/hls-foundation-os
https://arxiv.org/abs/2303.08774

	Abstract
	1 Introduction
	2 Privacy and Security Risks
	2.1 Risks in Geospatial Pre-training
	2.2 Risks in Geospatial Fine-tuning
	2.3 Risks in Centralized Serving and Tooling
	2.4 Risks in Prompt-Based Interaction
	2.5 Risks in Feedback Mechanisms

	3 Towards Privacy-Preserving and Secure GeoAI foundation models
	3.1 Privacy-Preserving Geospatial Data
	3.2 Private and Secure Training and Serving
	3.3 Private and Secure Geospatial Tooling
	3.4 Private and Secure Interaction with GeoFMs
	3.5 Secure Feedback Mechanisms

	4 Conclusion
	Acknowledgments

