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Abstract— Over the last few years, precision agriculture has
advanced significantly with the aid of unmanned aerial vehicles
(UAVs) and multi-agent systems (MAS). Traditionally, UAVs
exhaustively scout the field and predict crop health, but this
practice levies higher costs in terms of energy and execution
time. In this paper, we propose an alternative approach where
UAVs sample only a part of the field to predict the overall
crop health. The selection of areas in the field to be sampled is
based on different indices such as NDVI (Normalized Difference
Vegetation Index), GLI (Green Leaf Index), and NDWI (Water
Index). These vegetation indices indicate various factors of
plant health. By correlating and quantifying these indices, we
can assess the overall health of the crop field. Moreover, the
individual indices provide a finer level of detail in precision agri-
culture, allowing for targeted measures to enhance yield. Our
approach employs reinforcement learning and deep learning
techniques to autonomously scout and predict the crop health
map. Preliminary results show that by sampling only 40% of
the field, we can generate a health map with 90% accuracy.
This approach reduces labor costs by 4.8 times and increases
profits by 36% compared to traditional methods.

I. INTRODUCTION

The rapid growth of the global population and the in-
creasing demand for food necessitates swift advancements in
agricultural practices to meet the pressing needs of human-
ity. Projections indicate that the combination of population
expansion and heightened per capita food consumption will
require a substantial 70% increase in agricultural yields by
the year 2050 [1], [2]. However, the looming challenge of
climate change is exacerbating the complexity of farming,
as it contributes to stressors on crop health, such as drought,
diseases, and pest infestations [3]. These adverse effects are
projected to lead to a considerable reduction in crop yields
by up to 11% by 2050 [4].

Precision agriculture occupies a pivotal role in meeting
the escalating global food demand, as it centers upon the
optimized utilization of resources and the maximization
of yields through the strategic integration of technology.
This, in turn, contributes significantly to the stabilization
and reliability of the global food supply chain. Precision
agriculture is a promising step toward improving efficiency
and reducing adverse impacts of agriculture production [5].
It assesses the variation across the crop fields and divides the
field into multiple management zones. So they can be treated
efficiently and effectively [6], [7]. The advent of digital
agriculture, or data-driven precision agriculture, employs a
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suite of tools including remote sensors (e.g., satellites and
UAVs), in-field sensors (such as embedded soil sensors),
and data processing techniques (e.g., machine learning)[8].
This combination informs decisions related to planting, har-
vesting, and crop treatment, all aimed at maximizing yield
and minimizing the environmental impact of agricultural
activities. Frequent sensing using these technologies enables
the detection of crop health stress due to factors like drought
and heat, the identification of diseases, pests, and other
harmful phenomena [9], [10], [11], [12]. A pivotal task in
digital agriculture involves transforming the collected data
into health maps, providing valuable geospatial insights into
crop health, and guiding effective crop treatment strategies,
commonly referred to as crop scouting.

Traditionally, data acquisition is approached through two
main methods: human piloting of UAVs to capture high-
resolution images or UAVs autonomously scouting the entire
fields. Human pilots, while capable of capturing accurate
data, tend to escalate operating costs due to the need for
frequent field mapping. Conversely, the autonomous UAV
scouting method is cost-effective, but it often leads to
redundant data due to a 60-70% side overlap in captured
images. Moreover, both approaches necessitate frequent bat-
tery replacements due to limited flight times [13], which
subsequently extend execution times and have an impact on
profit margins.

The UAVs are equipped with various imaging sensors,
including RGB, multi-spectral, thermal, and hyper-spectral.
RGB cameras are well-suited for tasks such as growth pre-
diction, biomass estimation, and canopy height measurement.
On the other hand, multi-spectral cameras excel in early
detection of drought stress, identification of pests, yield
prediction, and their combination with thermal and hyper-
spectral data enables estimation of nutrient status, pathogen
presence, and weed detection [14]. Unlike RGB cameras,
multi-spectral cameras capture both visible and invisible light
spectra, enhancing the assessment of crop conditions and
thereby enabling more informed agricultural decisions [15],
[16]. Hyper-spectral and thermal cameras capture distinct
bands of the invisible light spectrum. Hyper-spectral sensors
are particularly effective in the early detection of pathogens
and diseases [17], while thermal cameras are effective in
identifying drought stress in crops [18]. RGB and multi-
spectral cameras are commonly used whereas hyper-spectral
and thermal are less common due to relatively higher costs
[19].

Given the limited payload capacity of UAVs, they are
constrained to carrying only one imaging sensor at a time



[20]. Consequently, achieving a comprehensive analysis of
a crop field necessitates the deployment of multiple drones.
However, employing multiple drones for scouting an entire
field introduces additional operational and maintenance ex-
penses that may outweigh the potential gains. The increased
costs associated with utilizing multiple drones can present a
challenge in terms of maintaining profitability.

Contributions: In this paper, we present an efficient
method for detailed analysis of whole-field without ex-
haustively scouting entire field. We employ a swarm of
heterogeneous UAVs with distinct capabilities. We utilize
multi-agent reinforcement learning to scout crucial areas
through competing rewards, as a result battery replacements
and payload requirements are minimized. The collected data
is combined and extrapolated to provide deeper insights on
crop health eliminating the need of exhaustive scouting of
the whole field.

II. METHODOLOGY

This approach can be divided into two major alternating
components: 1) RL algorithm for exploration and sensing,
2) extrapolation algorithm for creating a health map from
sensed data. Each UAV will continually cycle between se-
lecting their next location based on the estimated health map
and updating the estimated health map by extrapolating from
sensed data. Together all agents will pool their results into a
combined extrapolated health map.

A. Reinforcement Learning Algorithm

We use a modified version of Q-learning and a MARbLE
architecture to select the path to be sensed through multi-
agent reinforcement learning [21]. As shown in figure 1
the UAVs explore during the initial phase and then try to
maximize the utility of visiting a particular management
zone. The states are the x and y coordinates of the man-
agement zones and the utility or reward of each action is
the error between the predicted values from the CNN and
the observed values. Ultimately, the Q-table is updated with
the reward from the combined goal and budget preferences
from the MARbLE algorithm. These rewards are updated
using Bellman’s Equation, as shown below.

Q(si, ai) = (1− α) ∗Q(si, ai)+ (1)

α ∗ [R(si, ai, si+1) ∗ γmax(Q(si+1, ai+1))]

Equation 1 calculates the maximum reward with learning
rate α and a discount factor γ taking into account the
immediate and long-term rewards.

To create a generalized and transferable model we use
filters while populating the Q-table. The observed rewards
are quantified based on their variance such that the observed
pattern can be transferred to different fields as well.

B. Extrapolation

While the UAV explores the field, the health map is con-
tinuously extrapolated using the newly gathered data at each
step. This extrapolation is crucial, as it provides an accurate

Fig. 1: An illustration of crop scouting using 4 UAVs
with distinct capabilities through CNN extrapolation and
Reinforcement learning

foundation for decision-making within the RL algorithm.
The RL algorithm aims to maximize the percentage error
gain between predicted and ground truth values, thereby
systematically reducing the error associated with the pro-
jected health map. To extrapolate the health maps, we employ
Convolutional Neural Networks (CNN). This extrapolation is
built on the premise that distinct sensor readings correspond
to various aspects of plant health. This concept is akin to
human health diagnostics, where different tests reveal diverse
health issues that may also be interconnected. For instance,
in humans the identification of calcium deficiency through
the Total Calcium Test (TCT) can potentially indicate the
presence of osteoporosis [22].

We quantify comprehensive crop health by combining data
from different health indicators such as NDVI, NDWI, and
GLI. This combination allows us to present an overarching
picture of the crop field’s health. Moreover, the extrapolated
individual health maps associated with these indicators offer
more intricate insights, aiding in the identification of precise
measures necessary to enhance the crop’s well-being. The
quantification of overall health based on different health
indicators (NDVI, NDWI, GLI). Furthermore, the overall
health map complements the decision making in multi-agent
reinforcement learning.

The design of the CNN is based on U-net Architecture
[23]. The input to the CNN is observed health maps, and the
output is fully predicted health maps.

III. PRELIMINARY RESULTS

Our previous work using RL for crop scouting and CNN
for extrapolation with single agent employing RGB camera
provide promising results [24]. A health map is predicted
with 90% accuracy by scouting only 40% field and hence
reducing labor costs 4.8 times and boosting profit by 36%.
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